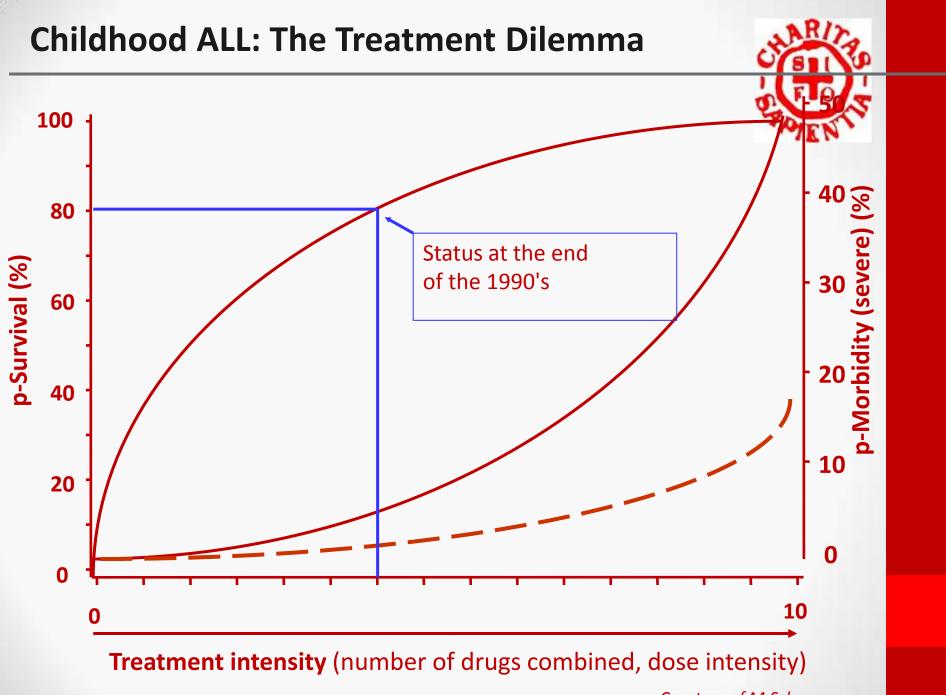
STATEN ST

TRAINING REGIONALE PER FARMACISTI OSPEDALIERI SU "LEUCEMIA MIELOIDE CRONICA (LMC): NUOVE TECNOLOGIE NUOVI APPROCCI" Milano, Starhotels Echo 18 febbraio 2016

Il Next Generation Sequencing e la target Therapy

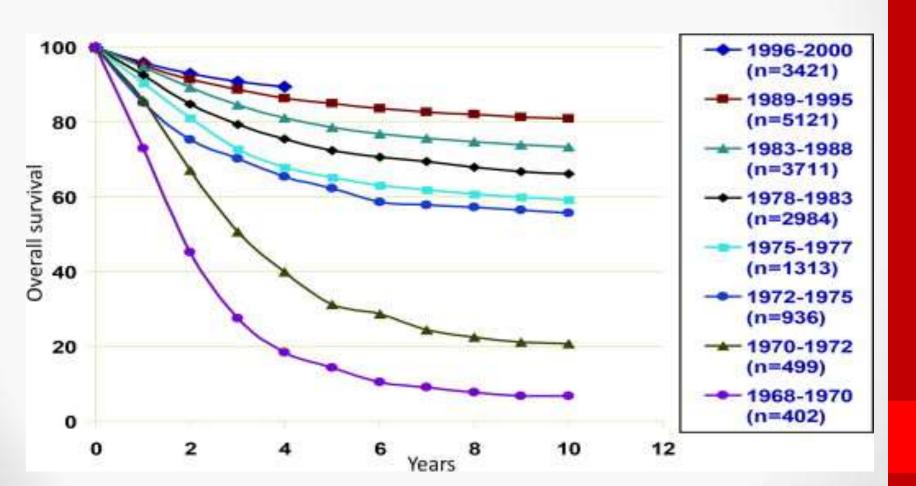
Giovanni Cazzaniga Centro Ricerca Tettamanti Fondazione MBBM - Monza

Introduzione



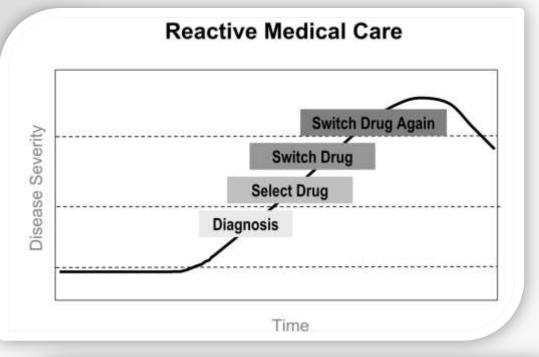
- [...] Con l'obiettivo di facilitare l'accesso del paziente ai trattamenti innovativi il seguente progetto formativo si propone di:
- a) *condividere il valore della terapia innovative* in ematologia come ulteriore approccio terapeutico che genera speranza di concreti benefici in termini di sopravvivenza ai pazienti affetti da LMC e ALL Ph+;
- b) promuovere la cultura delle terapie innovative al fine di favorire, educare e coinvolgere i Farmacisti Ospedalieri, i Clinici e i Responsabili del controllo di gestione delle ASL/AO nel corretto reperimento delle risorse e nell'organizzazione del percorso terapeutico in previsione della disponibilità di farmaci innovativi.

Towards Personalized medicine

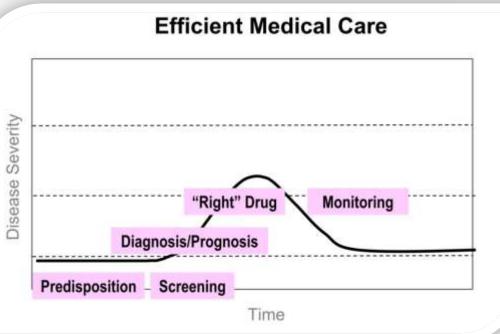

- Traditionally, doctors used:
 - Family history
 - Socioeconomic circumstances
 - Environmental factors
- Now:
 - genomic/genetic testing
 - proteomic profiling
 - metabolomic analysis (study metabolites)

Courtesy of M.Schrappe

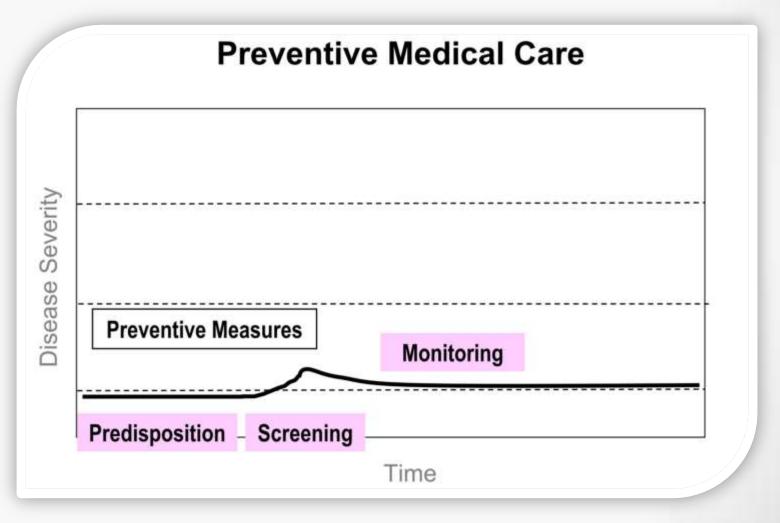
Improved overall survival in childhood acute lymphoblastic leukemia



Hunger SP, Pediatr Blood Cancer 2005;45(7):876-80


Childhood ALL trials: criteria for risk group stratification

ALL Study (year)	70	76	79	81	83	86	90	95	TEN	2 0
WBC		X	X					X		
Total leukemic cell mass (RF)				x	x	x	x			
Age		x	x					x		
Sex								x		
CNS		×	x			x	x			
Thymic tumor		x	x			X				
Immunophenotype (T vs non-T)		sP	sP			x	x	×		x
No CR to phase Ia				x	x	x	x	x	x	x
Prednisone response day 8						x	x	x	x	x
MRD									x	×
t(9;22) BCR-ABL							x	x	x	EsPhALL
t(4;11) MLL-AF4								x	x	x
t(12;21) ETV6-RUNX1										x
Ploidy										x


Old Paradigm

New Paradigm

Future Paradigm

Some Definitions

- Biological Marker (Biomarker): A characteristic that is measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers may relate to efficacy, safety, differentiation *etc*.
- Diagnostic: A biomarker that has applicability in clinical use or patient management (*e.g.* to identify a sub-population of patients who would benefit most from a drug).
- Surrogate Endpoint: A biomarker accepted by regulatory agencies as a substitute for a clinical endpoint.

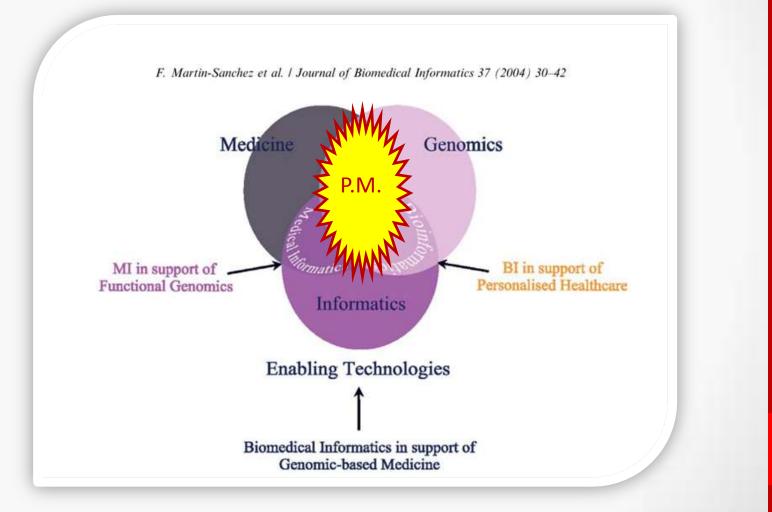
Prognostic vs. Predictive Factors

<u>Prognostic Factor</u>: Any measurement that is associated with clinical outcome in the absence of therapy, or with the application of a standard therapy that all patients are likely to receive (a predictor of the natural history of the disease).

<u>Predictive Factor</u>: Any measurement associated with response or lack of response <u>to a particular</u> <u>therapy</u>, where response can be defined using any of the clinical endpoints commonly used in clinical trials.

Clark GM. Mol Oncol 2008, doi:10.1016/j.molonc.2007.12.001

Personalized Medicine: Definition


"Personalized medicine is the use of diagnostic and screening methods to better manage the individual patient's disease or predisposition toward a disease....

"Personalized medicine will enable risk assessment, diagnosis, prevention, and therapy specifically tailored to the unique characteristics of the individual, thus enhancing the quality of life and public health."

– NHLBI Strategic Planning, Theme #10

Requirements of personalized medicine

Pharmacogenetics

- Study of genetic variation that gives rise to different responses to drugs
- It is estimated that genetics can account for 20 to 95 percent of variability in drug disposition and effects.
- Non-genetic factors include: age, organ function, concomitant therapy, drug interactions, and the nature of the disease.

Targeted therapy in Ph+ leukemia

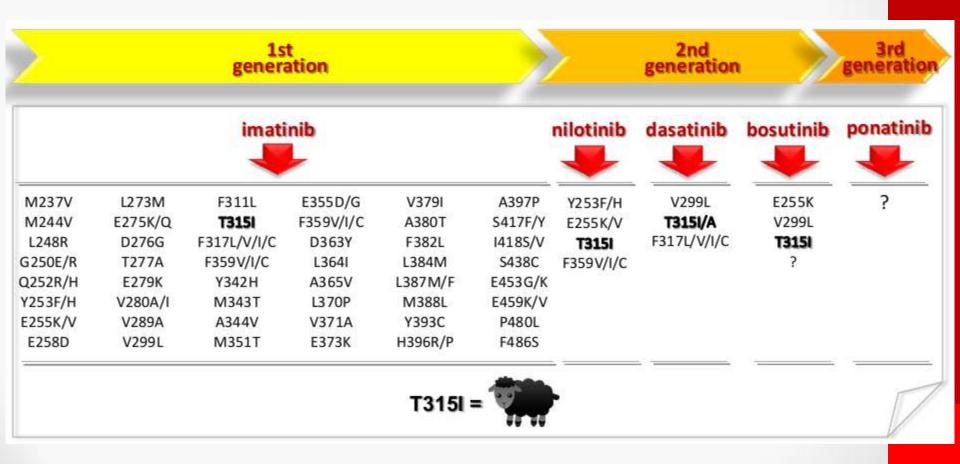
- Why mutation analysis
- When mutation analysis
- How to perform mutation analysis
 - Conventional Sanger sequencing
 - Next generation sequencing
- How to use mutation analysis results

Why BCR-ABL KD mutation analysis?

- Up to 25% of patients does not achieve a satisfactory response, and mutations are one of the most common reasons for TKI resistance
- The presence of a mutation (ANY mutation) is a FAILURE, hence it mandates a **change of therapy**
- Mutations are a sign of genetic instability, thus identify patients who need to be more carefully followed
- Five of the ten most frequent BCR-ABL KD mutations also confer **resistance to at least one 2G-TKI**

BCR-ABL KD mutations are a sign of genetic instability

<u>nutation frequency</u>


genetic instability

- Mutations are not induced by TKI therapy
- TKI therapy simply results in selection of mutations independently arisen as a consequence of the genetic instability of the Ph+ clone
- Genetic instability is most probably fostered by Bcr-Abl itself
- The longer Bcr-Abl remains active, or the less efficiently it is inhibited, the higher the mutation rate
- Bcr-Abl is still the key target for therapeutic improvement

Detection of specific mutations predicts for TKI inefficacy

Resistance to imatinib: the 'top-ten'

	СР	myBC	lyBC/Ph+ ALL
1°	M351T	T315I	T315I
2°	M244V	M351T	E255K
3°	F359V	G250E	Y253H
4°	H396R	F359V	F359V
5°	G250E	Y253H	M244V
6°	E355G	M244V	M351T
7°	E255K	Q252H	F317L
8°	Y253H	E255K	F311L/I
9°	T315I	H396R	Q252H
10°	F317L	L384M	D276G

Resistant to NILOTINIB Resistant to DASATINIB

Resistant to BOTH

Soverini et al, ASH 2011

Mutation analysis is thus a precious tool for:

- identifying 'higher risk' patients who will need a more careful monitoring
- timely selecting those patients who will benefit from a change in the therapeutic strategy
- tailoring 2G-TKI treatment on the individual patient, thus aiming to the best possible outcome

When to perform BCR-ABL TKD mutation analysis

- Early detection of BCR-ABL mutations is very important for the therapeutic decisions.
- It is emphasized in the guidelines: mutation analysis should be done in the presence of poor response or treatment failure.

Guideline for CML Management in China 2013 ¹	ELN 2013 ²	NCCN2014 ³
 In case of suboptimal response; In case of treatment failure; In case of loss of response to current treatments. 	 In case of treatment failure in chronic phase; In case of disease progression to accelerated or blast phases When considering to switch to alternate TKI therapy. 	 1.Chronic phase If there is inadequate initial response(failure to achieve BCR-ABL≤10% at 3 and 6 months) Any sign of loss of response (defined as hematologic or cytogenetic relapse) 1-log increase in BCR-ABL1 transcript levels and loss of MMR 2. Disease progression to accelerated or blast phase.

How to perform mutation analysis

Conventional Sanger sequencing is still the recommended method

NCCN Guidelines

NCCN NCCN Network*

Comprehensive Cancer Network* NCCN Guidelines Version 3.2014 Chronic Myelogenous Leukemia

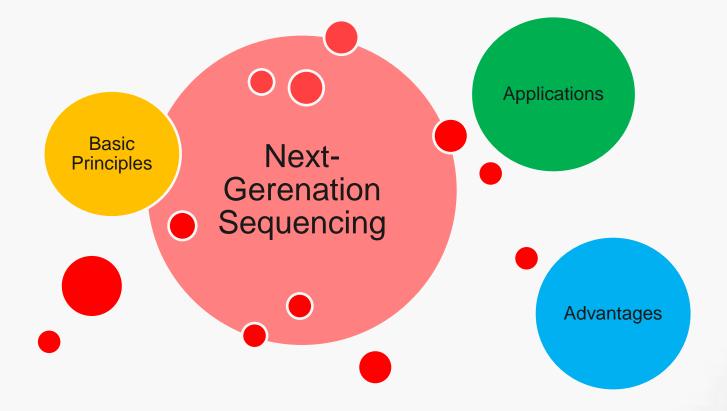
Chronic phase :

- If there is inadequate initial response(failure to achieve PCyR or BCR-ABL≤10%[IS] at 3 and 6 months or CCyR at 12 and 18 months)
- Any sign of loss of response (defined as hematologic or cytogenetic relapse)
- 1-log increase in BCR-ABL1 transcript levels and loss of MMR
- Disease progression to accelerated or blast phases.

ELN Recommendations

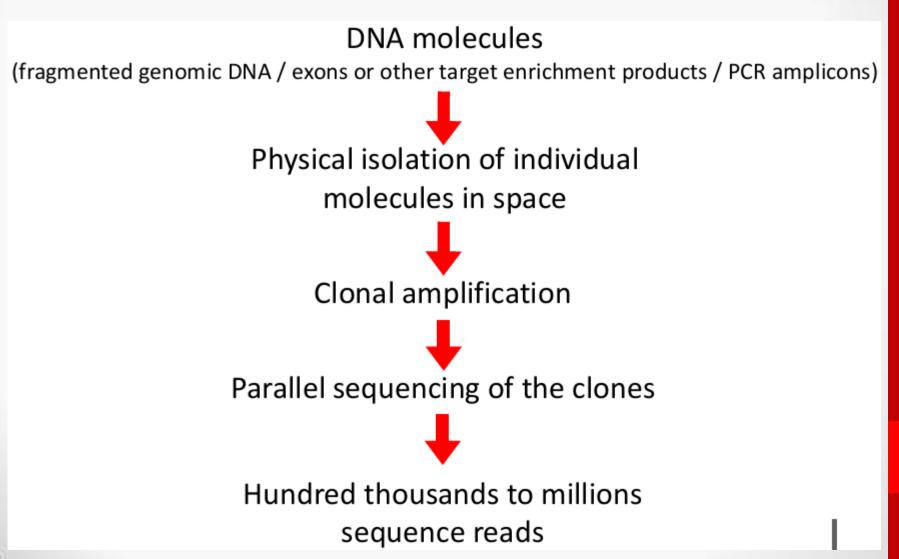
Prepublished online June 26, 2013; doi:10.1182/blood-2013-05-501569

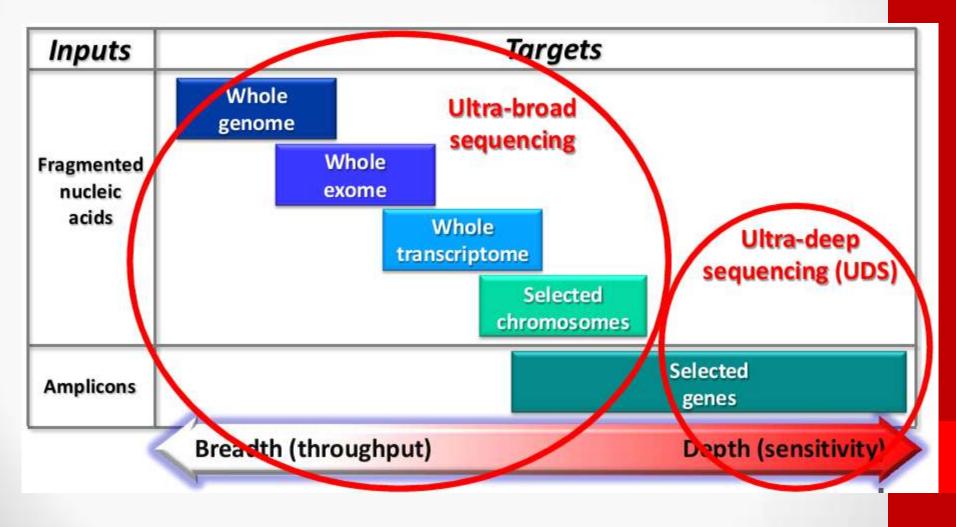
European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013


It is recommended to perform BCR-ABL KD mutation analysis, or point mutation analysis (non ABL1 genetic polymorphism testing) using conventional Sanger sequencing in case of warning, treatment failure or disease progression to AP or BP.

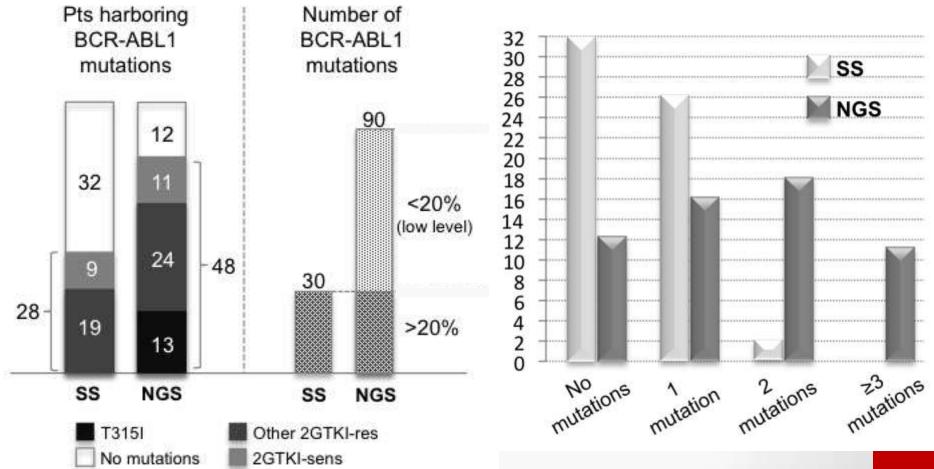
1. NCCN CML Guideline v2014.2

2. Baccarani M et al. Blood 2013;122(6): 872-884.


Next-Generation Sequencing

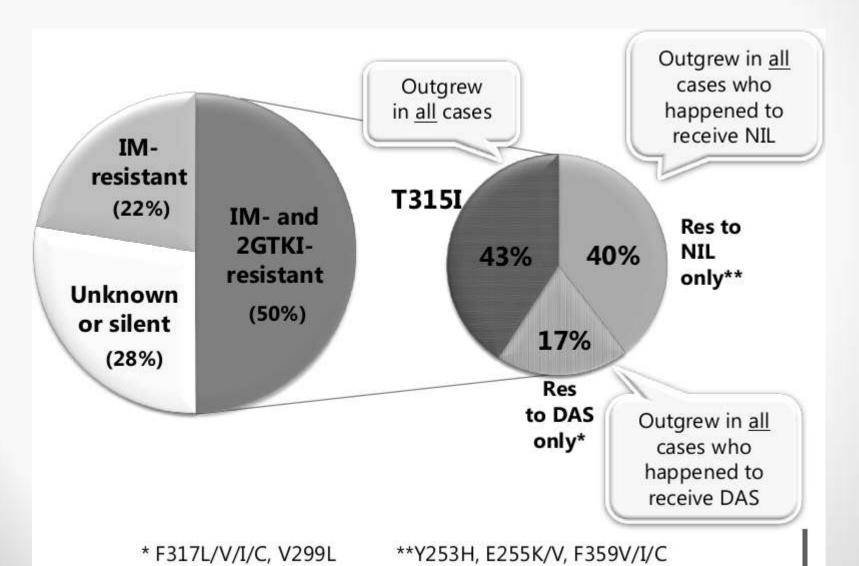

Next-Generation Sequencing: basic principles

Next-Generation Sequencing: applications



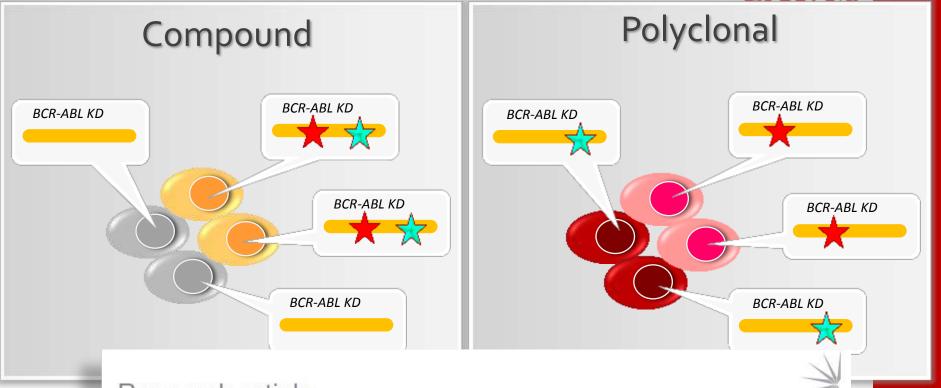
Next-Generation Sequencing: advantages

- Higher sensitivity
- Possibility to fully characterize the spectrum of minor mutated variants
- Clonal analysis and discrimination between compound and polyclonal mutations
- Quantitative analysis of the dynamics of mutant populations over time


NGS at the time of switchover allows to detect 2G TKI-resistant mutations in more cases

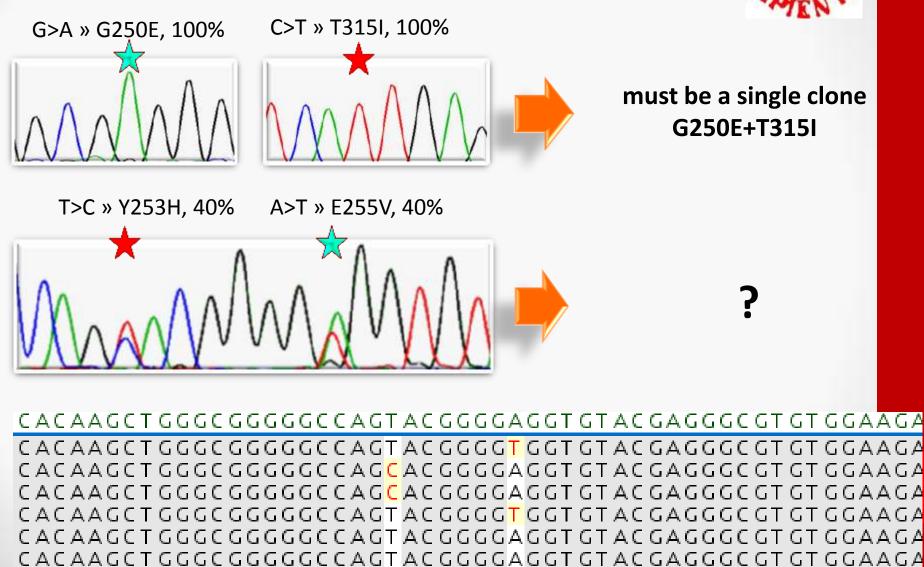
Soverini et al, Oncotarget 2016

Resistance profile of the 60 low level mutations detected at switchover by NGS


Compound mutations Unity is strength

Two biologically different scenarios

Research article


Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency

Neil P. Shah,¹ Brian J. Skaggs,² Susan Branford,³ Timothy P. Hughes,³ John M. Nicoll,² Ronald L. Paquette,² and Charles L. Sawyers^{2,4}

The Journal of Clinical Investigation http://www.jci.org Volume 117 Number 9 September 2007

Compound mutants cannot easily be inferred by Sanger sequencing

Two hits are most frequently the result of sequential TKI therapy

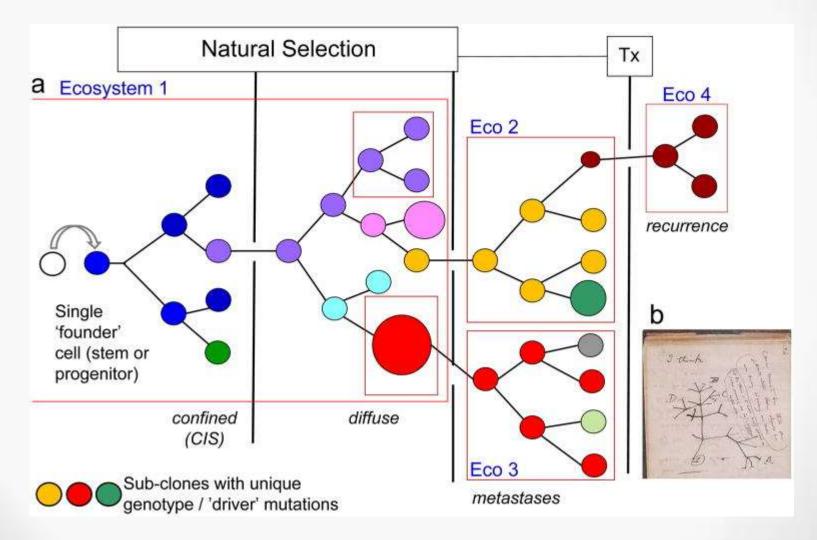
Relapse to 1st TKI

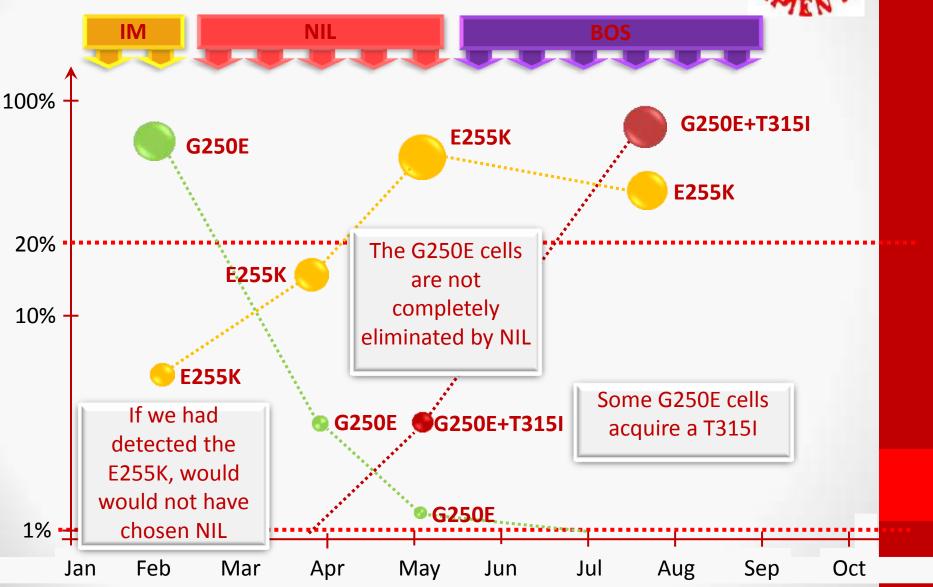
1. Two mutations are sequentially acquired within a short timeframe

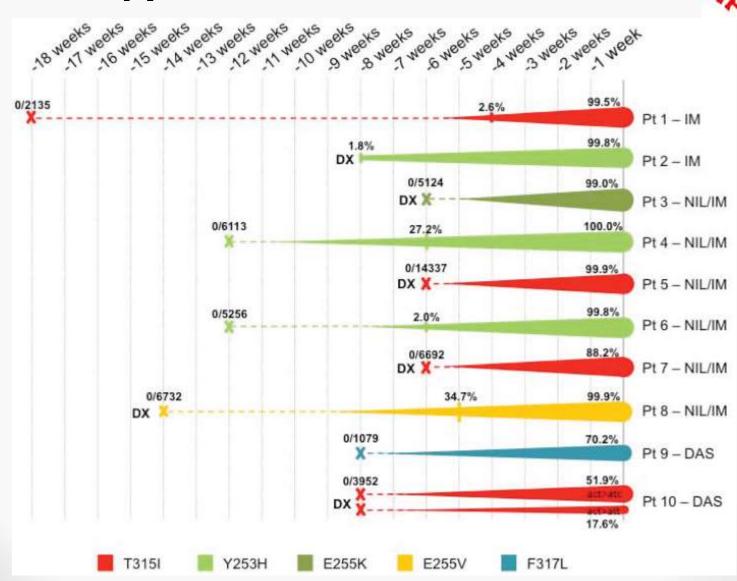
2. The baseline mutant is eradicated and later replaced by another one conferring resistance to the 2nd TKI

3. The baseline mutant persists and later acquires an additional mutation further increasing its

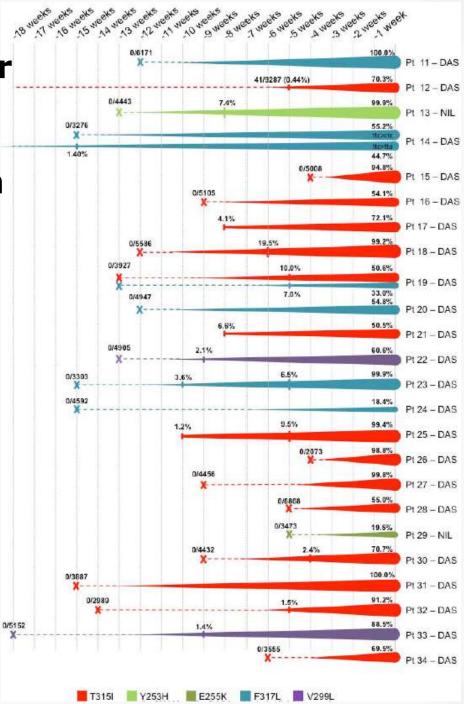
fitness




Selective pressures on branching clonal architecture of clonal evolution in leukemia


Greaves M, Nature 2012;481:306

The complex and dynamic landscape of mutant populations can be best followed by NGS



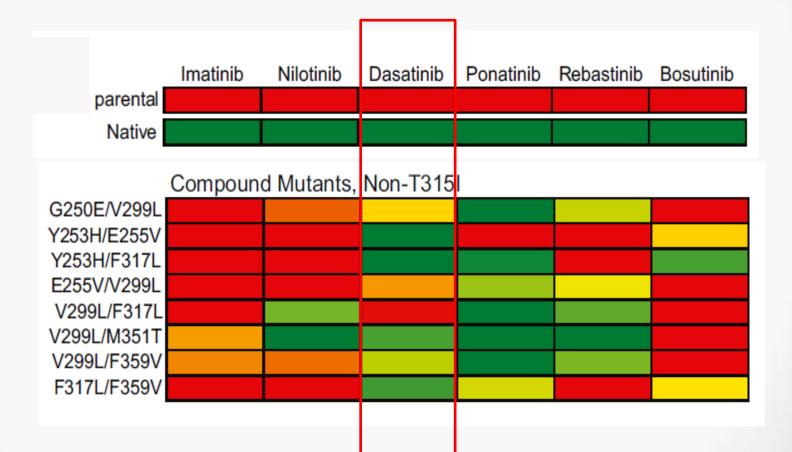
Time course of resistance-driver mutations in ALL patients who relapsed on first-line TKI therapy

Time course of resistance-driver mutations in ALL patients who relapsed on second-line TKI therapy

How to use mutation analysis results: the 2016 options

• T315I:		
Ponatinib or HSCT		
• T315A, F317L/V/I/C:		
Consider nilotinib or bosutinib rather than dasatinib		
• Y253H, F359V/C/I:		Ponatinib
Consider dasatinib or bosutinib rather than nilotinib		may also be an
• V299L:		option if
Consider nilotinib rather than bosutinib or dasatinib		dasatinib and
• E255K/V:		nilotinib
Consider dasatinib rather than bosutinib or nilotinib		already failed
Any other mutation:	-	
Consider dasatinib or nilotinib or bosutinib		

T315I-inclusive compound mutants confer resistance to all TKIs



	Imatinib	Nilotinib	Dasatinib	Ponatinib	Rebastinib	Bosutinib		Imatinib	Nilotinib	Dasatinib	Ponatinib	Rebastinib	Bosutinib
parental							parental						
Native							Native						
Single Mutants													
M244V							_	Compound	Mutants,	T315I-Inclu	usive		
G250E							M244V/T315I						
Q252H							G250E/T315I						
Y253H							Q252H/T315I						
E255V							Y253H/T315I						
V299L							E255V/T315I						
F311I													
T315I							F311I/T315I						
T315M							T315I/M351T						
F317L M351T							T315I/F359V						
F359V							T315I/H396R						
H396R							T315I/E453K						

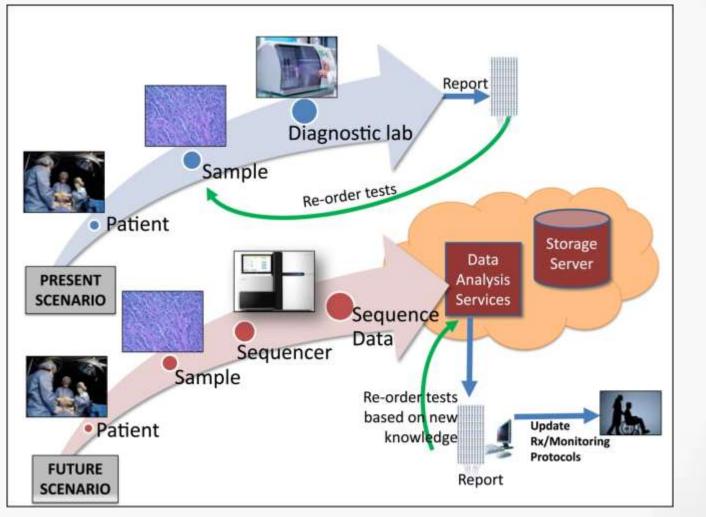
Zabriskie M. S, et al. Cancer Cell. 2014,26, 428-442,

Nearly all non-T315I compound mutants are sensitive to Dasatinib

Zabriskie M. S, et al. Cancer Cell. 2014,26, 428-442,

Conclusion /1

- To achieve optimal long-term outcomes, best use of molecular analysis tools and therapeutic opportunities is fundamental
- BCR-ABL mutation analysis is important since
 - precious information on the biology of the disease (genetic instability)
 - tailor 2GTKI treatment on the individual patient
- According to the guidelines, BCR-ABL KD mutation analysis should be performed once treatment response appears "unsatisfactory"


Conclusion /2

- Conventional Sanger sequencing is still the recommended method for BCR-ABL KD mutation screening
- NGS is a robust, powerful and versatile technology which is becoming accessible to a wider and wider number of diagnostic laboratories
- NGS has been shown to paint a more accurate picture of BCR-ABL KD mutation status, especially at the time of switch to 2G-TKIs, and is likely to replace conventional sequencing soon

A new scenario

NGS Application Other Considerations

NGS- significant false positive rate

Mutation confirmation

Variable % tumor cells and variable % tumor cells with (presumably) secondary mutation May overlap with NGS false positive rate

- Low level mutations- not easily confirmed by Sanger sequencing (limit 15-20%)
- Numerous heterogeneous aberrations- i.e. oncologic applications need algorithm development

- NGS diagnostics shifted towards data analysis
- NGS infrastructures must consist of appropriate expertise and computational hardware
- Unprecedented amounts of medical data and various processing algorithms necessitate adequate tools for
 - Data management (alignment and assembly)
 - QC of image processing, base calling, filtering, alignment, SNP finding/application steps archiving

NGS Application Other Considerations

NGS data density = frequently encountered variants of unknown significance

- Which variants are clinically actionable?
- Development of evidence-based scientific standards to evaluate
- utility in in different patient populations for accurate risk estimation
- Risk of over interpretation, unnecessary medical action, unwarranted psychological stress
- Careful selection of patients for genome sequencing and genetic counseling-crucial

Need for standardized guidelines and quality control

We look to a future in which medicine will be predictive, preventive, preemptive and *personalized*

Simona Soverini

Federica Mottadelli

Lab.Tettamanti - Monza

