

IL RUOLO DEL FARMACISTA NELLA MEDICINA NUCLEARE TRADIZIONALE

Marisa Di Franco

Farmacia Ospedaliera Azienda Ospedaliero Universitaria San Luigi Gonzaga ORBASSANO (TO)

marisa.difranco@gmail.com

Cos'è la Radiofarmacia?

E' un servizio che garantisce:

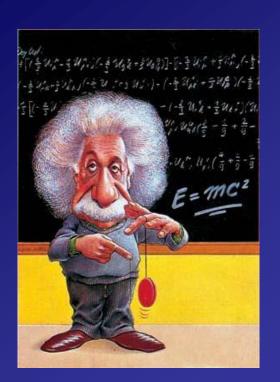
...dei RADIOFARMACI

In teoria il "passo è breve"...

Farmaco: FARMACIA = Radiofarmaco: X

X = RADIOFARMACIA

...e il passo successivo?



Il passo successivo è ...

Farmacia: Farmacista = Radiofarmacia: X

X = RADIOFARMACISTA

il passo NON è così breve come potrebbe sembrare!

1° Luglio 2011

Entrata in vigore delle NORME DI BUONA PREPARAZIONE (NBP) DEI RADIOFARMACI PER MEDICINA NUCLEARE

Farmacopea Ufficiale Italiana Ed. XI Suppl. I (D.M. 30 marzo 2005)

RESPONSABILITA' (definite dalle NBP)

Il Medico Nucleare è il responsabile generale*, cui riferiscono:

Il responsabile per l'Assicurazione della Qualità

Il responsabile per le operazioni di Preparazione

Il responsabile per i Controlli di Qualità

Figure tra loro indipendenti

"La preparazione ed il controllo di qualità dei radiofarmaci devono essere effettuati da personale specializzato ed in possesso di tutte le conoscenze necessarie per poter operare in condizioni controllate con sorgenti radioattive non sigillate"

^{*} la F.U. XI cita espressamente il Dl.vo 187/00

QUALI FIGURE PROFESSIONALI SONO IMPLICITAMENTE IDENTIFICATE?

Qual è la figura professionale istituzionalmente responsabile della preparazione e controllo dei medicinali?

ATTIVITA' DEL FARMACISTA OSPEDALIERO

acquisti

valutazione dei costi capitolati e gare d'appalto

farmaci orfani sacche di nutrizione parenterale

AREA LOGISTICA

(radio)farmaci, dispositivi medici

distribuzione

gestione del magazzino

AREA TECNICA

preparazioni galeniche magistrali e officinali sterili e non sterili

miscele antalgiche radiofarmaci

chemioterapici

Prontuario terapeutico

elenco di (radio)farmaci adeguati alle necessità cliniche di una certa realtà ospedaliera

Farmacovigilanza

monitoraggio reazioni avverse a (radio)farmaci e dispositivi medici

AREA DI APPROPRIATEZZA

Comitato etico

sperimentazione di (radio)farmaci, dispositivi medici

Informazione indipendente

organizzazione di eventi per l'informazione indipendente sull'uso dei (radio)farmaci

Il Farmacista in Medicina Nucleare è in grado di ...

- Fornire un adeguato supporto tecnico-scientifico nella scelta ed acquisto di radiofarmaci, generatori e kit
- Può essere responsabile della qualità per ciò che concerne i radiofarmaci:
 - definizione del sistema di assicurazione della qualità e sua implementazione
 - messa a punto delle metodiche di marcatura (preparazioni da kit o estemporanee)
 - validazione di nuove metodiche di controlli di qualità
- Occuparsi della farmacovigilanza sui radiofarmaci (monitoraggio reazioni avverse e difetti di fabbricazione)
- Definire le possibili interferenze tra farmaci e radiofarmaci somministrati al paziente

se ha la possibilità di formarsi adeguatamente

CLASSIFICAZIONE DEI RADIOFARMACI

In base alla misura in cui i diversi radiofarmaci devono essere manipolati *in loco* in medicina nucleare per la loro preparazione e controllo si possono suddividere in:

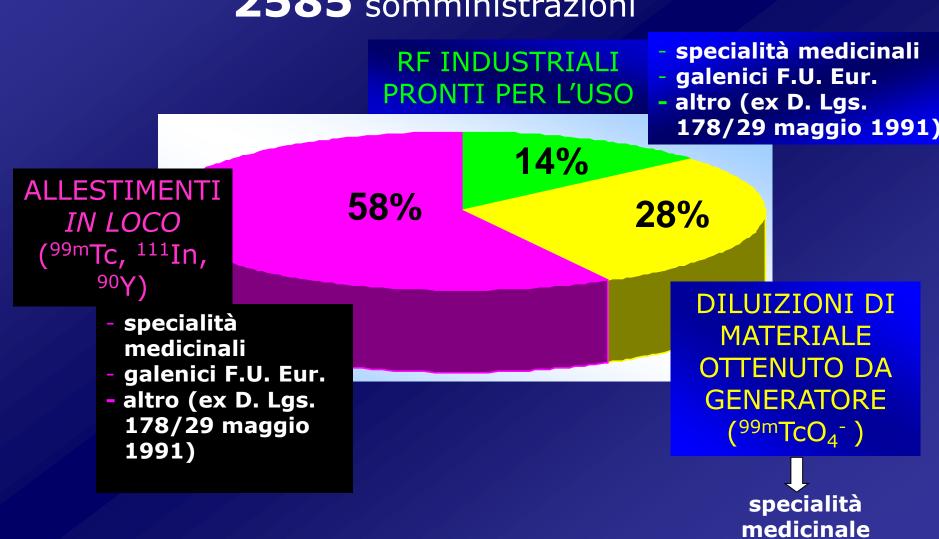
- 1. Radiofarmaci già pronti per l'uso (generalmente prodotti dall'industria)
- 2. Radiofarmaci ottenuti in loco per mezzo di kit registrati
- 3. Radiofarmaci prodotti in medicina nucleare come preparazioni estemporanee

MEDICINA NUCLEARE TRADIZIONALE OSPEDALE SAN LUIGI GONZAGA (ORBASSANO)

ATTIVITA

DIAGNOSTICA

> Esami scintigrafici


TERAPEUTICA

- Terapiaradiometabolicadell'ipertiroidismo
- Trattamento
 palliativo del dolore
 da metastasi ossee
- Terapia radiometabolica dei linfomi non Hodgkin CD20+

QUANTE SOMMINISTRAZIONI DI RADIOFARMACI? (dati di una "piccola" Medicina Nucleare)

in un anno (1° settembre 2011 – 31 agosto 2012):

2585 somministrazioni

RADIOFARMACI GIA' PRONTI PER L'USO

Sono garantiti dall'industria o dal laboratorio produttore

(per quanto riguarda le peculiarità della preparazione radiofarmaceutica)

CONTROLLI NECESSARI (analoghi a quelli sui farmaci NON radioattivi):

- a. Documento di trasporto all'atto della ricezione
- b. Correttezza dell'etichetta
- c. Esame visivo della preparazione
- d. Corrispondenza dell'attività dichiarata con quella misurata

RADIOFARMACI ALLESTITI IN LOCO in medicina nucleare

PREPARAZIONI
OTTENUTE PER MEZZO
DI KIT PER USO
DIRETTO IN VIVO

PREPARAZIONI ESTEMPORANEE

Ogni preparazione per la quale sia stata rilasciata una A.I.C. (o autorizzazione equipollente) che deve essere combinata con radionuclidi nella preparazione radiofarmaceutica finale NBP poco restrittive (ambienti non classificati)

Preparazioni radiofarmaceutiche realizzate a partire dalle materie prime nel laboratorio di preparazione dei radiofarmaci in base ad una prescrizione medica od alle indicazioni di una Farmacopea

NBP molto restrittive (impianti, locali, sterilità,...)

RADIOFARMACI ALLESTITI IN LOCO PER MEZZO DI KIT REGISTRATI

La maggior parte di quelli in uso (in particolare nella diagnostica SPECT) sono ottenuti per mezzo di

KIT REGISTRATI:

- 1. dotati di regolare AIC italiana
- 2. dotati di registrazione EU con procedura abbreviata
- 3. commercializzati ai sensi del D.L. 13/12/1991

IL D.M. 13 DICEMBRE 1991...

- consente di mantenere in commercio e di impiegare i radiofarmaci già in commercio alla data di entrata in vigore del D.L.vo 178/91 (che riconosce i radiofarmaci come medicinali) → elenco allegato al decreto, approvato dal CPMP (Committee for Proprietary Medicinal Products)
- definisce il 30 aprile 1992 come scadenza ultima entro cui presentare la domanda di registrazione al Ministero della Salute

Le procedure di valutazione dei dossier di registrazione si sono protratte in Italia fino al 2007 senza concludersi.

→ Richiamo della Commissione Europea agli stati membri in ritardo nel rilascio della autorizzazioni dei radiofarmaci «pre '92»...

ELENCO DI CUI ALL'ART. 1, COMMA 1

RADIOPHARMACEUTICALS SELECTED FOR A COORDINATED EUROPEAN REVIEW OF EXISTING PRODUCTS

RADIOFIARMACEUTICALS SELECTED FOR A COORDINATED EUROFEAN REVIEW OF EXISTING PRODUCTS				
RADIOPHARMACEUTICALS		GENERATORS	LABELLING KITS	PRECURSORS
P-32 Na-PHOSPHATE	inj	Kr-81m GENERATOR	Tc-99m ALBUMIN	Cr-51 Na-CROMATE
Ca-47 CHLORIDE	inj	Tc-99m GENERATOR	Tc-99m MAA	In-111 OXINATE
Cr-51 EDTA	inj	10-35III OLIVLIGITOIC	Tc-99m MICROSPHERES	m-III OMINIE
Co-57 CYANOCOBALAMIN inj			Tc-99m DMSA	
Co-58 CYANOCOBALAMIN inj			Tc-99m DTPA	
Fe-59 CITRATE	inj		Tc-99m GLUCONATE	
Ga-67 CITRATE	inj		Tc-99m GLUCEPTATE	
Se-75 BILE SALT	capsules		Tc-99m PYROPHOSPHATE	
Y-90 COLLOIDS	inj		Tc-99m MDP	
In-111 CHLORIDE	inj		Tc-99m HDP	
In-111 DTPA	inj		Tc-99m DPD	
I-123 Na-IODIDE	solution or caps		Tc-99m SULPHUR COLLOID	
	Inj		Tc-99m Re-SULPHIDE COLLOID	
I-123 MIBG	inj	Tc-99m Sb-SULPHIDE COLLOID		
I-123 IPPURATE	inj		Tc-99m TIN COLLOID	
I-125 ALBUMIN	inj		Tc-99m PTP	
I-125 HIPPURATE	inj		Tc-99m PHYTATE	
I-125 FIBRINOGEN	inj		Tc-99m ALBUMIN MICROCOLL	OID (nm)
I-131 Na-IODIDE solution or caps			Tc-99m ALBUMIN MICROCOLL	
	Inj		Tc-99m HIDA	4 /
I-31 HIPPURATE	inj		Tc-99m DISIDA	
I-131 ALBUMIN	inj		Tc-99m EIDA	
			Tc-99m IODIDA	
I-131 NORCHOLESTEROL inj			Tc-99m MEBROFENINE	
I-131 MIBG	inj		Tc-99m Sn-MDP (cell labelling)	
Xe-133 XENON	inj, gas			
T1-201 CHLORIDE	inj			

Di questi radiofarmaci e generatori solo il 30% circa è oggi in possesso di regolare AIC in Italia

13.12.1991 (pubblicato nella G.U.

Dal 2009 sono operanti...

 Il gruppo di lavoro AIFA per i radiofarmaci

L' Unità Radiofarmaci presso l' ufficio autorizzativo

IL GENERATORE DI 99Mo/99mTc

Codice ATC: V09F X01 (Radiofarmaci diagnostici vari)

Proprietà farmacodinamiche

Alle dosi utilizzate per scopi diagnostici NON è stata osservata attività farmacodinamica. (...questo vale per tutti i radiofarmaci)

7. TITOLARE DELL'AUTORIZZAZIONE ALL'IMMISSIONE IN COMMERCIO

GE Healthcare S.r.l. Via Galeno, 36 20126 – Milano -Italia

8. NUMERO DELL'AUTORIZZAZIONE ALL'IMMISSIONE IN COMMERCIO

037027012 "2 – 31,7 GBq generatore di radionuclide, 1 generatore da 2 GBq" 037027024 "2 – 31,7 GBq generatore di radionuclide, 1 generatore da 3,2 GBq" 037027036 "2 – 31,7 GBq generatore di radionuclide, 1 generatore da 4 GBq" 037027048 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 4,8 GBq" 037027051 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 5,9 GBq" 037027063 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 6,7 GBq" 037027075 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 7,1 GBq" 037027087 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 7,9 GBq" 037027099 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 9,9 GBq" 037027101 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 11,9 GBq" 037027113 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 15,9 GBq" 037027125 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 19,8 GBq" 037027127 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 23,8 GBq" 037027149 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 23,8 GBq" 037027149 "2 - 31,7 GBq generatore di radionuclide, 1 generatore da 31,7 GBq"

DATA DELLA PRIMA AUTORIZZAZIONE/RINNOVO DELL'AUTORIZZAZIONE

CONTROLLI PREVISTI PER I RADIOFARMACI ALLESTITI IN LOCO

Quali autorità stabiliscono le metodiche da utilizzare per il controllo dei radiofarmaci?

- La Farmacopea Europea stabilisce indicazioni e requisiti minimi
 - ➤ Il fabbricante (o il responsabile della radiofarmacia ospedaliera) può indicare istruzioni diverse e prevalgono queste ultime rispetto alla Farmacopea

CONTROLLI DI IDENTIFICAZIONE

SCOPO: accertare l'identità del radiofarmaco attraverso

Analisi dello spettro di emissione (identificazione del radionuclide)

Riconoscimento chimico attraverso una REAZIONE SPECIFICA Analisi cromatografiche (TLC, HPLC)

(necessari SOLO sulle preparazioni estemporanee)

CONTROLLI FISICI

SCOPO: verificare che il prodotto in esame rientri nei limiti stabiliti per alcuni parametri

CONTROLLI CHIMICI

- SCOPO: > Valutare la presenza di impurezze chimiche nel preparato
 - Misura del pH (verifica di una corretta diluizione)

CONTROLLI RADIONUCLIDICI

SCOPO: determinare la PUREZZA RADIONUCLIDICA della preparazione

Attività del radionuclide considerato

Attività totale della preparazione

METODO: analisi spettrometrica, impiego di schermature particolari

CONTROLLI MICROBIOLOGICI

A. Controlli di sterilità

B. Controllo di apirogenia: LAL test (saggio per le endotossine)

C. Convalida delle operazioni in asepsi (MEDIA FILL)

CONTROLLI MICROBIOLOGICI

LIMITI

- lunghi tempi di esecuzione rispetto alla tempistica di utilizzo
- problema della radioattività dei campioni (test di sterilità sul prodotto finito)

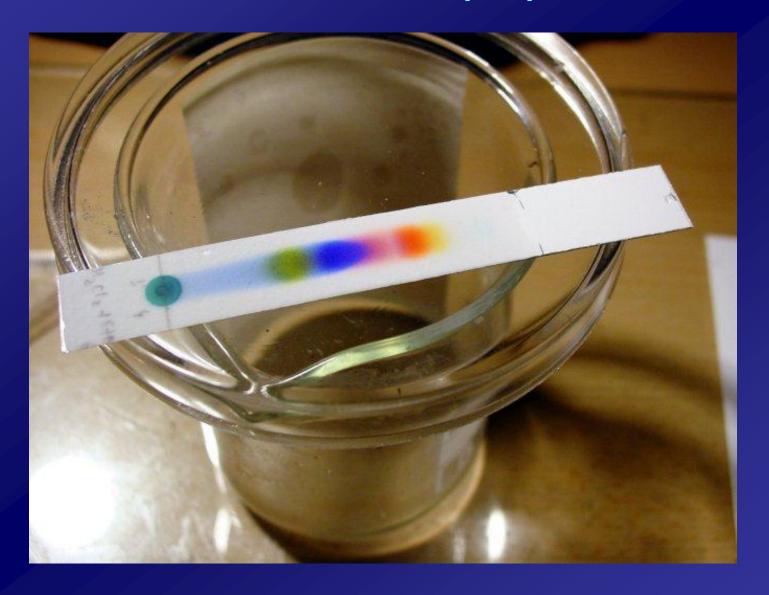
conclusi successivamente alla somministrazione

Controlli di processo

CONTROLLI DI PUREZZA RADIOCHIMICA (%) (P.R.)

DEFINIZIONE DI P.R.

Percentuale dell'attività del radionuclide considerato presente nella forma chimica attesa


METODI

- > TLC (cromatografia su strato sottile)
- PC (cromatografia su carta)
- Cromatografia su colonna
- > HPLC

Metodiche più utilizzate

Metodiche meno utilizzate

CROMATOGRAFIA SU STRATO SOTTILE (TLC) E SU CARTA (PC)

Passaggi operativi (I)

Porre nella camera cromatografica (provetta in vetro o polipropilene) un piccolo volume di fase mobile (4-5 ml) e chiuderla con un coperchio perché sia saturata dai vapori della fase mobile (per circa 10 min)

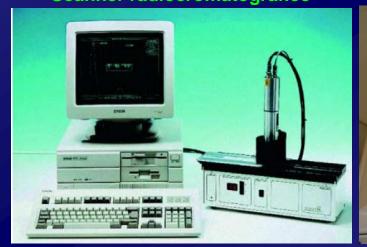
Prelevare con siringa da insulina o da tubercolina il radiofarmaco e deporne una goccia (3-5 μl) sulla lastrina cromatografica sulla linea di deposizione tracciata a 1,5 cm circa dal fondo della lastrina

Servendosi di pinze da laboratorio immergere la striscia verticalmente nella camera cromatografica, assicurandosi che:

a. la striscia non aderisca alle pareti della camera b. il livello iniziale della fase mobile non superi la linea di deposizione del campione

Passaggi operativi (II)

Sviluppare la cromatografia fino al raggiungimento da parte della fase mobile di un livello che disti 1,0 cm circa dall'estremità superiore della lastrina


Estrarre la lastrina e lasciarla asciugare all'aria

Acquisire i conteggi della striscia con uno scanner radiocromatografico o con gamma camera o con rivelatore autoradiografico oppure tagliare la lastrina in più parti in base agli Rf delle specie chimiche da separare e contare le varie porzioni in un pozzetto o con un beta counter (a seconda del radionuclide in esame)

Beta counter

Scanner radiocromatografico

Gamma camera

Rivelatore autoradiografico

RADIOFARMACI COMUNEMENTE IMPIEGATI IN MEDICINA NUCLEARE OTTENUTI DA KIT

Α.

Radiofarmaci marcati con tecnezio-99m (complessi di coordinazione)

В.

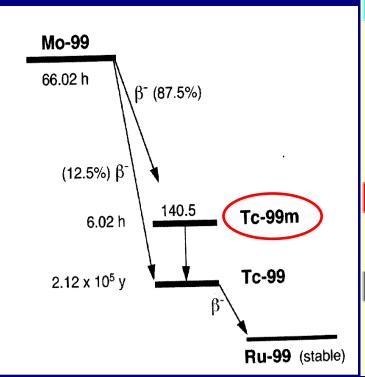
Radiofarmaci marcati con metalli trivalenti (Me³⁺)

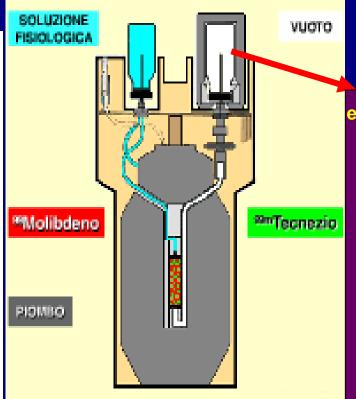
Peptidi radiomarcati (111In-pentetreotide)

Anticorpi monoclonali radiomarcati (90Y-ibrutumomab tiuxetano)

RADIOFARMACI MARCATI CON TECNEZIO-99m

STUDIO DELL' APPARATO OSTEO-ARTICOLARE: 99mTc-difosfonati

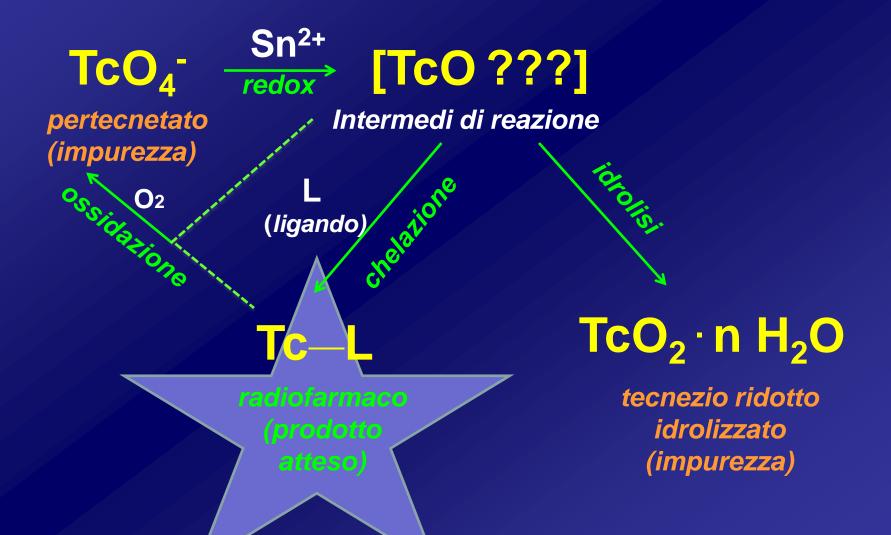

99mTc-MDP (metilendifosfonato)


PUREZZA RADIOCHIMICA:

Due lastrine TLC di silica gel ricoperte di fibre di vetro (2,5 x 20 cm) separano una il ^{99m}TcO₄- e l' altra il ^{99m}TcO₂ dal ^{99m}Tc-legato

L'eluato del generatore di tecnezio: 99mTcO₄- (pertecnetato)

Il tecnezio-99m è ottenuto per eluizione con soluzione fisiologica di una colonna cromatografica. La fase stazionaria della colonna è allumina su cui è adsorbito il molibdeno-99 (99MoO₄2-), che decade a tecnezio-99m (99mTcO₄-)



RADIOFARMACI "TECNEZIATI" (= MARCATI CON 99mTc)

$$99 \text{mTcO}_4^- + \text{Sn}^{2+} + \text{n L} + \text{H}^+ \longrightarrow 99 \text{mTc(L)}_n + \text{Sn}^{4+} + \text{H}_2\text{O}$$

I radiofarmaci tecneziati (ad eccezione del pertecnetato) sono complessi di coordinazione in cui l'atomo coordinato è il tecnezio, ottenuto dalla riduzione del pertecnetato (eluato) ad opera di un agente riducente (solitamente ioni Sn²+) a numero di ossidazione I, III, IV, V a seconda delle condizioni di reazione

Reazioni implicate nella sintesi dei radiofarmaci tecneziati

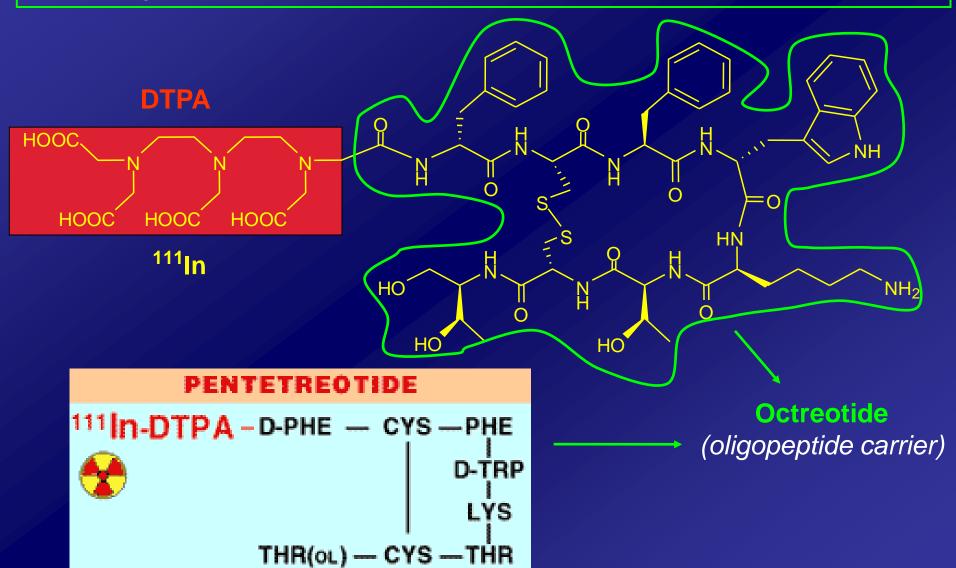
P.R. RADIOFARMACI TECNEZIATI

$${}^{99m}\text{TcO}_{4}^{-}\% = \frac{{}^{99m}\text{TcO}_{4}^{-}(\text{cpm})}{{}^{99m}\text{Tc-legato (cpm)} + {}^{99m}\text{TcO}_{2}(\text{cpm}) + {}^{99m}\text{TcO}_{4}^{-}(\text{cpm})} \times 100$$

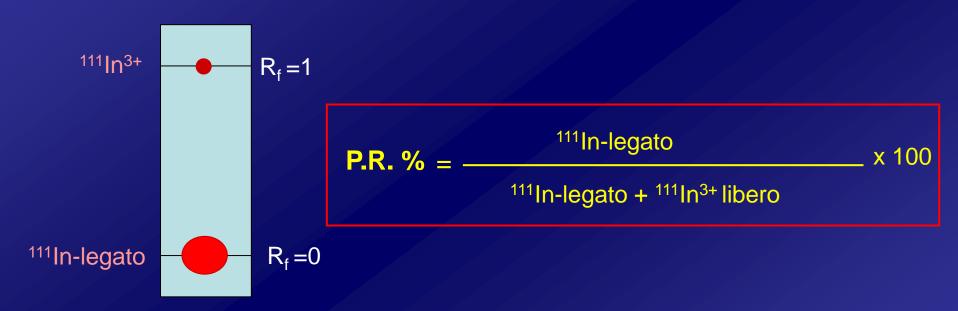
$${}^{99m}\text{TcO}_{2}\% = \frac{{}^{99m}\text{TcO}_{2}(\text{cpm}) + {}^{99m}\text{TcO}_{2}(\text{cpm})}{{}^{99m}\text{TcO}_{2}(\text{cpm}) + {}^{99m}\text{TcO}_{4}^{-}(\text{cpm})} \times 100$$

P.R. = $100 - {}^{99m}TcO_4 - {}^{99m}TcO_2$ %

ECCEZIONI: MIBI, MAA, ECD (solo separazione del 99mTcO₄-)


1 PEPTIDI RADIOMARCATI (es. ¹¹¹In-pentetreotide)

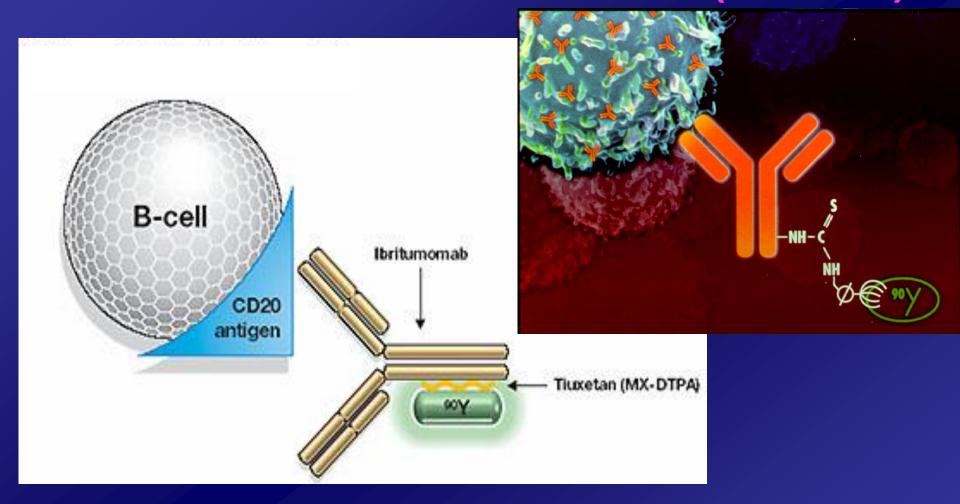
2 ANTICORPI MONOCLONALI RADIOMARCATI (es. 90Y-ibritumomab tiuxetano)


PEPTIDI RADIOMARCATI

111In-pentetreotide (OCTREOSCAN®)

E' l'unico peptide recettoriale radiomarcato registrato come specialità medicinale (per la diagnosi tumori neuroendocrini positivi per i recettori sst2 della somatostatina)

111 In-PENTETREOTIDE CONTROLLO DI PUREZZA RADIOCHIMICA

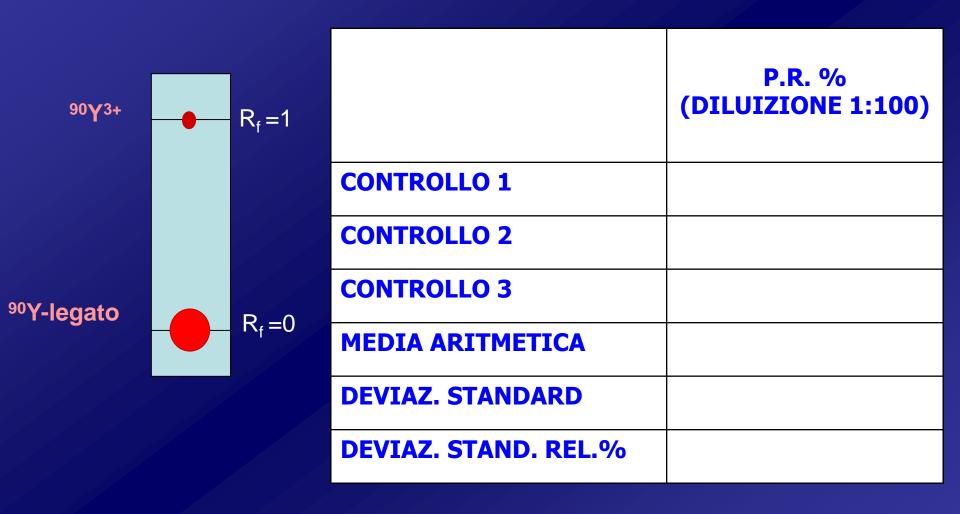


sodio citrato 0,1 N (pH 5) su ITLC-SG

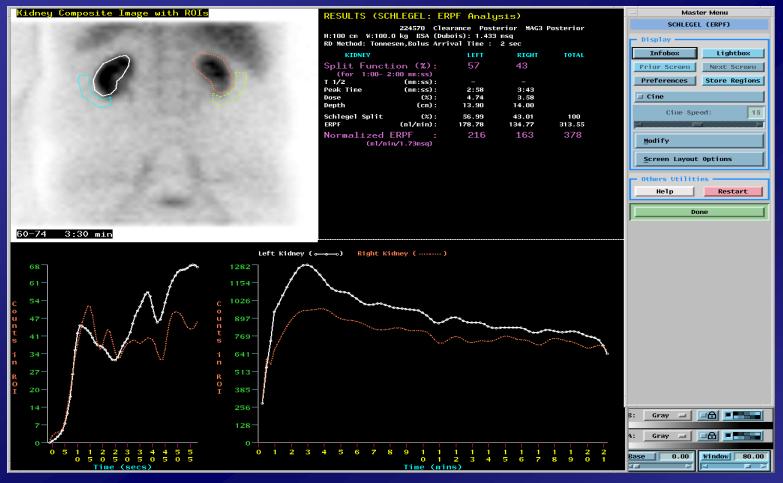
Unica impurezza → ione In³+ libero

ANTICORPI MONOCLONALI RADIOMARCATI

90Y-IBRITUMOMAB TIUXETANO (Zevalin®)



Il radionuclide ittrio-90 è coniugato con l'anticorpo mediante un AGENTE CHELANTE legato covalentemente ad un BRACCIO SPAZIATORE a sua volta legato covalentemente all'ANTICORPO


Stabilità chimica elevata

CONTROLLO DI PUREZZA RADIOCHIMICA DELLO ZEVALIN®

Purezza radiochimica (media) MINIMA: 95%

INTERPRETAZIONE DELLE IMMAGINI

REFERTO: "...si osserva, bilateralmente, ipocaptazione del radiofarmaco, come confermato dal basso rapporto segnale/fondo e dalla distribuzione finemente disomogenea del radiofarmaco stesso (il controllo radiochimico ha indicato resa di marcatura superiore al 98%)"

DOCUMENTAZIONE DELLE PREPARAZIONI RADIOFARMACEUTICHE

registrazione della singola preparazione

registrazione dei controlli di qualità

...secondo quanto previsto dalle Norme di Buona Preparazione (NBP) dei Radiofarmaci per Medicina Nucleare > BATCH RECORD

ESEMPIO PROCEDURA OPERATIVA DI ALLESTIMENTO DI UN RADIOFARMACO

99mTc- oxidronato (TECHNESCAN HDP®- Mallinckrodt)

PRECAUZIONI PER LA CONSERVAZIONE DEL KIT FREDDO

Il kit deve essere conservato al di sotto di 25° C, al riparo dalla luce e può essere utilizzato fino alla data di scadenza riportata sulla confezione.

PROCEDURA DI MARCATURA

- 1. Utilizzare tecniche asettiche durante la procedura.
- 2. Utilizzare guanti impermeabili durante le operazioni di preparazione.
- 3. Rimuovere il dischetto di plastica della fiala del kit.
- 4. Mettere la fiala contenente il liofilizzato in un contenitore schermato.
- 5. Aggiungere da 3 a 6 ml di soluzione di pertecnetato (attività massima: 11 GBq).
- 6. Prima di rimuovere la siringa, aspirare un volume di aria al di sopra della soluzione pari al volume di pertecnetato aggiunto onde normalizzare la pressione all'interno del flaconcino.
- 7. Agitare la fiala delicatamente, per circa 30 secondi per assicurare la completa dissoluzione.
- 8. Lasciar riposare per 15 minuti.
- 9. Verificare l'assenza di particelle in sospensione o precipitate o eventuali variazioni di colore della soluzione originale. Se si riscontrano anomalie, scartare senza esitazione il preparato.
- 10. Riportare i dati relativi alla preparazione sul foglio di registrazione.
- 11. La dose per il paziente deve essere prelevata in asepsi con una siringa sterile schermata.
- 12. Eliminare il materiale utilizzato e il suo contenitore secondo le procedure di smaltimento autorizzate per i rifiuti radioattivi.

PRECAUZIONI PER LA CONSERVAZIONE DOPO LA MARCATURA

Dopo la marcatura il medicinale deve essere conservato a temperatura compresa tra 2 e 8° C. Il prodotto è stabile per 8 ore dopo la marcatura.

FOGLIO DI LAVORO DI UN RADIOFARMACO

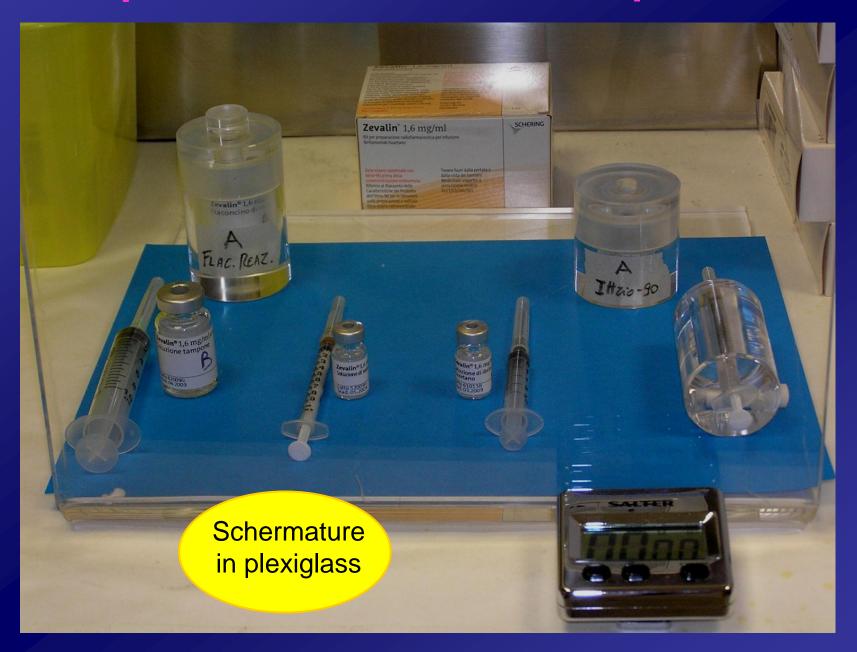
P³mTc-oxidronato (HDP Technescan® - Mallinckrodt) Lotto n.: Scad.: Rif.proced.n										
COLONNA	MARCATURA					CONTROLLO DI QUALITA'				
Numero		Ora					Ora d	li inizio	io	
Data / ora precedente eluizione	/h	Volume	ml				pH (4	,0-5,0)		
Data / ora eluizione	/h	Attività	GBq				radiod (≥ 9	ezza chimica 95%)		
Volume eluito	ml	Diluizione	NO Diluizione Diluizione radiofarmaco				CONTROLLO DI PUREZZA RADIOCHIMICA Doppia TLC→ FASE STAZIONARIA ITLC-SG (2,5 cm x 10 cm) 1* TLC:FASE MOBILE: sodio acetato 13,6% (Rf *** TcO. =			
Attività eluita	GBq	Volume finale	ml				0; Rf ***Tc0.= 1; Rf ***Tc-legato = 1) 2* TLC: FASE MOBILE metiletilchetone (Rf ***Tc0.= 0; Rf ***Tc0.= 1; Rf ***Tc-legato = 0)			
Firma del preparatore		Data / ora limite di utilizzo					COMPOSIZIONE 3.15 mg sodio ossidronato 0.258 mg cloruro stannoso biidrato 0.84 mg acido gentisico			
Firma del responsabile delle preparazioni							30 mg sodio doruro FORMA FARMACEUTICA POSOLOGIA Soluzione iniettabile 370-740 MBq			
Firma dell'esecutore dei CdQ		Autonzzazione della preparazi		NO		MEDIC RICHIE		Tiziana Angusti	Valerio Podio	
Firma del responsabile dei CdQ		Firma del responsabile dell'assicurazione della qualità						DATA DELLA PREPARAZIONE		

DOVE SI LAVORA ?

RISCALDATORE TERMOSTATICO

CELLA DI MANIPOLAZIONE CON SCHERMO DI PIOMBO

Manipolazione di radionuclidi γ-emittenti



AGITATORE MECCANICO

GAMMA CAMERA

Manipolazione di radionuclidi β'-emittenti

RIORGANIZZAZIONE DELL'ATTIVITA' DELLA MEDICINA NUCLEARE

INTERPRETAZIONE DELLE IMMAGINI alla luce del risultato dei controlli di qualità

BIBLIOGRAFIA

- 1. Farmacopea Italiana XII ed. (Monografie generali sulle Preparazioni Radiofarmaceutiche e sulla sterilità)
- 2. Farmacopea Italiana XI ed. Suppl.I (NBP)
- 3. Farmacopea Europea VI ed. (Monografie singoli radiofarmaci)
- 4. Schede tecniche dei singoli radiofarmaci
- 5. Saha G.B. Fundamentals of nuclear pharmacy, 5th ed.; Springer Editor: London, 2004
- 6. I.Zolle. *Technetium-99m Pharmaceuticals*; Springer Editor: Berlin 2007

