

Criteri di scelta nel trattamento sistemico del carcinoma renale

Evidenze cliniche nel trattamento del RCC

Alessandro Morabito

Unità Sperimentazioni Cliniche Istituto Nazionale Tumori di Napoli

Napoli, 14 ottobre 2008

The past...

IL-2 and IFN in metastatic RCC

• <u>IL-2</u>

- Responses:15%
- CR: 5% (durable)
- Survival benefit: not demonstrated in prospective trials
- Toxicity: significant (high dose...)

• <u>IFN</u>

- Responses:10%
- CR: 2%
- Survival benefit:
 increased median
 survival reported
- Toxicity: dose correlated...

Advances in last years

- In understanding the biology and genetics of renal cell carcinoma
- Availability of novel targeted approaches for the treatment of metastatic RCC

VHL Gene Mutation in Clear-Cell RCC

New target-based agents

Target-based agents in RCC: phase 3 trials

- Inhibitors of VEGF receptors
- Monoclonal antibody directed against VEGF
- Inhibitors of mTOR

Inhibitors of VEGF receptors

Morabito A The Oncologist 2006

Sunitinib (SU11248)

Sunitinib: phase 2 trials in RCC

- Two sequentially conducted multicenter phase 2 trials in second-line therapy
- Endpoint: response rate
- Overall response: <u>40%</u> and <u>34%</u>
- Stable disease: 28% and 23%

Motzer RJ, J Clin Oncol 2006; Motzer RJ, JAMA 2006

Sunitinib: Phase III Trial for first-line treatment of advanced RCC

Primary end-point: Progression-Free Survival

Motzer RJ, N Engl J Med 2007

Progression-Free Survival

Motzer RJ, N Engl J Med 2007

Overall Survival

o-value: 0.0128 (Wilcoxon)

nore appropriate test when the ratio of death rates between two eatment groups is not constant over time in situations where urvival data may be confounded by crossover or post-study eatments)

Quality of life

VOLUME 26 · NUMBER 22 · AUGUST 1 2008					
JOURNAL OF CLINICAL ONCOLOGY	ORIGINAL REPORT				
Quality of Life in De	tionto With Motostatic Donal Call				
Quality of Life in Pa	tients with Metastatic RenarCen				
Carcinoma Treated	With Sunitinib or Interferon Alfa:				
Results From a Phase III Randomized Trial					
David Cella, Jim Z. Li, Joseph C. Cap Isan Chen, and Robert J. Motzer	pelleri, Andrew Bushmakin, Claudie Charbonneau, Sindy T. Kim,				

	Table 2. Average Treatment Differences for Quality-of-Life Instruments						
	Least Squa	res Means					
Instrument	Sunitinib	IFN-α	Difference	95% CI	Р		
FKSI-DRS	29.4	27.4	1.98	1.46 to 2.51	< .000		
FKSI-15	45.3	42.1	3.27	2.36 to 4.18	< .000		
FACT-G	82.3	76.8	5.58	3.91 to 7.24	< .000		
PWB	21.3	19.9	1.42	0.796 to 2.04	< .000		
SFWB	23.5	22.3	1.20	0.667 to 1.73	< .000		
EWB	18.3	17.5	0.787	0.323 to 1.25	.000		
FWB	19.0	17.0	1.98	1.33 to 2.63	< .000		
EQ-5D Index	0.762	0.725	0.0364	0.0109 to 0.0620	.005		
EQ-VAS	73.4	68.7	4.74	2.60 to 6.87	< .000		

Sunitinib: conclusions

Author	Agent	Setting	Pts	PFS (months)	OR (%)	OS
Motzer (NEJM, 2007)	Sunitinib vs IFN	1 st line	750	11 vs 5 (p<0.0001)	31 vs 6 (p<0.001)	HR: 0.65 (p=0.02)*

- Sunitinib has consistently demonstrated improvements in progression-free survival, response rate and overall survival compared to IFN- α
- Sunitinib provided superior QoL compared with IFNin mRCC patients
- Sunitinib is the reference standard for the first-line treatment of mRCC

Sorafenib

Methods

- **Study design:** randomized discontinuation trial
- **Primary end-point**: progression-free survival (PFS) at 12 weeks

Randomized discontinuation trial

 It is a rational phase II study design to demonstrate activity of a possibly cytostatic agent in a disease having substantial patient-to-patient variation in tumor growth rates, and for which disease stabilization is a clinically meaningful measure of activity

Sorafenib: phase 2 results

- **PFS at 12 weeks**: 50% with sorafenib vs 18% with placebo (p=0.0077)
- Median PFS: 24 weeks with sorafenib vs 6 weeks with placebo (p=0.0087)

Sorafenib: Phase III Trial for cytokine pretreated advanced RCC

Progression-free and overall survival

Escudier B, N Engl J Med 2007

Sorafenib for older patients: subset analysis

> 70 years: 115 Patients

Eisen T, JNCI 2008

Sorafenib: conclusions

Author	Agent	Setting	Pts	PFS (months)	OR (%)	OS
Escudier (NEJM, 2007)	Sorafenib vs Placebo	2 nd line	903	5.5 vs 2.8 (p<0.001)	10 vs 2 (p<0.001)	HR: 0.72 (p=0.02)

- Sorafenib has demonstrated improvements in PFS compared to placebo
- Sorafenib is the reference standard for the secondline treatment of cytokine pretreated mRCC

Monoclonal antibody directed against VEGF

Kerbel RS, N Engl J Med 2008

Methods

- Design: randomized, double-blind, phase 2 trial, comparing placebo with bevacizumab at doses of 3 and 10 mg per kilogram of body weight, given every two weeks
- Primary end-point: TTP (time to progression of disease)

SIFO

RO = 10% (95% CI: 2.9-24.2%)

p=0.041 RO = 0%

Figure 1. Kaplan–Meier Analysis of Survival Free of Tumor Progression for Patients Receiving High-Dose Bevacizumab (Panel A) or Low-Dose Bevacizumab (Panel B), as Compared with Placebo.

The high dose of bevacizumab was 10 mg per kilogram of body weight. The low dose of bevacizumab was 3 mg per kilogram. Doses were given every two weeks. P values were calculated by the log-rank test.

Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial

Bernard Escudier, Anna Pluzanska, Piotr Koralewski, Alain Ravaud, Sergio Bracarda, Cezary Szczylik, Christine Chevreau, Marek Filipek, Bohuslav Melichar, Emilio Bajetta, Vera Gorbunova, Jacques-Olivier Bay, Istvan Bodrogi, Agnieszka Jagiello-Gruszfeld, Nicola Moore, for the AVOREN Trial investigators*

Escudier B, Lancet 2007

OS

PFS

Figure 2: Kaplan-Meier estimates of (A) overall survival and (B) progression-free survival Interim analysis of overall survival based on 251 of 450 scheduled events. Median overall survival had not been reached in the bevacizumab plus interferon alfa group. Final analysis of progression-free survival based on 505 progression events.

Bukowski RM, Berlin 2008

Bevacizumab: conclusions

Author	Agent	Setting	Pts	PFS (months)	OR (%)	OS
Escudier (Lancet, 2007)	Bevacizumab + IFN vs placebo+IFN	1 st line	649	10.2 vs 5.4 (p<0.0001)	31 vs 13 (p<0.0001)	HR: 0.75 (p<0.0026)*

- Bevacizumab + interferon has demonstrated improvements in PFS compared to interferon + placebo
- Bevacizumab + interferon can be considered an alternative treatment for the first-line therapy of mRCC

Inhibitors of mTOR

Rini BI, ASCO 2008

Temsirolimus

Randomized Phase II Study of Multiple Dose Levels of CCI-779, a Novel Mammalian Target of Rapamycin Kinase Inhibitor, in Patients With Advanced Refractory Renal Cell Carcinoma

Michael B. Atkins, Manuel Hidalgo, Walter M. Stadler, Theodore F. Logan, Janice P. Dutcher, Gary R. Hudes, Young Park, Song-Heng Liou, Bonnie Marshall, Joseph P. Boni, Gary Dukart, and Matthew L. Sherman

	Table 5.	Turnor Response	e nates of not			2		
				CCI-779 L	ose Level			
	Tr (n =	otal = 111)	25 (n =	i mg = 36)	75 (n =	mg = 38)	25((n =) mg = 37)
Response	No.	%	No.	%	No.	%	No.	%
CR	1	0.9	0	0	0	0	1	2.7*
PR	7	6.3	2	5.6	3	7.0	2	5.4
CR/PR	8	7.2	2	5.6	3	7.9	3	8.1
95% CI	3.2 t	o 13.7	0.7 t	to 18.7	1.7 t	o 21.4	1.7 t	o 21.9
MRt	29	26.1	5	13.9	13	34.2	11	29.7
SD ≥ 8 weeks, < 24 weeks	23	20.7	8	22.2	6	15.8	9	24.3
SD ≥ 24 weeks	19	17.1	12	33.3	5	13.2	2	5.4
CR/PR/MR/SD \geq 24 weeks	56	50.5	19	52.8	21	55.3	16	43.2
95% CI	40.8	to 60.1	35.5	to 69.6	38.3	to 71.4	27.1	to 60.5
PD	22	19.8	6	16.7	9	23.7	7	18.9
Unknown	10	9.0	3	8.3	2	5.3	5	13.5

				CCI-779 D	ose Level			
	Total (n	= 111)	25 mg (n = 36)	75 mg (n = 38)	250 mg	(n = 37)
Risk Group	No.	%	No.	%	No.	%	No.	%
Good	8	7	2	6	2	5	4	11
Intermediate	48	43	14	30	14	37	20	54
Poor	49	44	20	56	19	50	10	27
Unknown*	6	5	0		3	~	3	

			Table 8. f	Median Survivals	of CCI-7	79-Trea	ated RCC Pati	ents by Risk Gro	up			
Good					Intermediate				Poor			
CCI-779 Dose	Patie	ents	Median Survival		Patie	ents	Median Survival		Patie	ents	Median Survival	
Level	No.	%	(months)	95% CI	No.	%	(months)	95% CI	No.	%	(months)	95% CI
25 mg (n = 36)	2	6	18.4	18.4 to 23.6	14	39	23.0	12.5 to NA	20	56	7.1	4.1 to 15.0
75 mg (n = 35)*	2	6	NA	24.1 to NA	14	40	20.9	10.4 to 26.1	19	54	86	7.3 to 10.3
250 mg (n = 34)*	4	12	22.4	14.4 to NA	20	59	19.3	16.5 to 29.5	10	29	8.4	3.9 to 17.3
All (n = 105)	8	8	23.8	17.7 to 27.1	48	46	22.5	16.9 to 25.7	49	47	8.2	7.0 to 10.1

Abbreviations: RCC, renal cell carcinoma; NA, not available. *Three patients had data missing for one or more of the prognostic factors and could not be assigned a risk group.

Temsirolimus: Phase III trial for firstline therapy of poor-risk RCC

- **Primary end point**: Overall Survival
- Demographics
 - MSKCC poor-risk patients (modified criteria)
 - Predominately clear-cell carcinoma

Poor-risk patients

- At least three of the following six predictors of short survival were required:
 - <u>LDH</u> > 1.5 times the upper limit of the normal range
 - <u>Hemoglobin</u> level below the lower limit of the normal range
 - <u>Calcium</u> level > 10 mg per deciliter
 - <u>Time from initial diagnosis</u> of renal-cell carcinoma to randomization < 1 year
 - Karnofsky performance score of 60 or 70
 - <u>Metastases</u> in multiple organs

Temsirolimus: conclusions

Author	Agent	Setting	Pts	PFS (months)	OR (%)	OS
Hudes (NEJM, 2007)	Temsirolimus vs IFN vs TEMSR+IFN	1 st line, poor-risk	626	3.7 vs 1.9 vs 3.7	9 vs 7 vs 11	HR: 0.73 (p=0.0069)

- Temsirolimus as a single agent (25 mg iv weekly) significantly improves outcomes as first-line therapy of poor-risk mRCC patients
- The combination of temsirolimus + IFN- α did not significantly improve survival vs IFN- α

* No statistically significant according to O'Brien-Fleming

Everolimus

Everolimus: phase 2 trial

- Everolimus is an oral mTOR inhibitor
- Promising anti-tumor activity in patients with pretreated RCC:
 - response rate 32%
 - stable disease 51%

Jac J, ASCO 2007

Everolimus: Phase III Trial for advanced RCC patients pretreated with inhibitors of VEGFR

Motzer R, ASCO 2008

Progression-Free Survival by Treatment Central Radiology Review

Motzer R, ASCO 2008

Everolimus: conclusions

Author	Agent	Setting	Pts	PFS (months)	OR (%)	OS
Motzer (Lancet, 2008)	Everolimus vs placebo	2 nd line	410	4.0 vs 1.9 (p<0.001)	1 vs 0	HR: 0.83 (p=0.23)

 Everolimus is the first and only agent with established clinical benefit for the treatment of patients with advanced renal cancer after therapy with inhibitors of VEGF receptors

RCC Therapeutic algorithm: 2008

Patients	Setting	Therapy (level 1)	Options (level ≥2)
Untreated	MSK Risk: good or intermediate	Sunitinib or Bevacizumab + IFN	HD IL-2 Clinical Trials Observation
	MSK Risk: poor	Temsirolimus	Sunitinib Clinical trials
Refractory	Cytokine refractory	Sorafenib	Sunitinib Bevacizumab
	Refractory to angiogenesis inhibitors	Everolimus Clinical Trials	Investigational

The present...: an embarrassment of riches ?

Targeted therapies: challenges and future directions

- Combination therapy
- New schedules
- Sequential strategies
- Role of cytokines
- New agents
- Predictive biomarkers
- Adjuvant and neo-adjuvant therapy

Ongoing studies...

Phase III Study of Bevacizumab plus Temsirolimus vs Bevacizumab plus IFN for First-line Treatment of mRCC

Primary end-point: PFS

Randomised Phase III Study of Temsirolimus vs Sorafenib as second-line Therapy in mRCC

Primary end-point: PFS

START: Randomised Phase II Sequential Two-agent Assessment in RCC Therapy

Stratification:

- Clear cell vs non-clear cell
- Prior nephrectomy (yes/no)
- [,] PS (0/1)

Objectives:

Estimate TTP1 and ORR with each drug (first-line setting) **Estimate TTP2** and ORR with each drug (second-line setting) Estimate and rank TTP1 + TTP2 for each sequence

S-TRAC:

Sunitinib Phase III Trial in Adjuvant Renal Cancer

T3 N0 or NX, M0, Fuhrman's grade ≥2, ECOG 1 or T4 N0 or NX, M0, any Fuhrman's grade, nd any ECOG status or Any T, N1-2, M0, any fuhrman's grade, and any ECOG status

Primary end point: Disease-free survival

Secondary end points: OS, safety, patientrelated outcomes, association of molecular markers with regression - free survival

ASSURE:

Adjuvant Sorafenib or Sunitinib for Unfavourable RCC

ECOG-sponsored, randomised, double-blind, multicentre phase III trial; currently recruiting

Primary endpoint: DFS

UISS (II–V); Histologic subtype clear cell/non-clear cell Biopsy at recurrence

tart Date: May 2006; recruiting

NCT00326898. www.clinicaltrials.gov

SORCE:

Sorafenib in Patients with Resected Primary RCC at High or Intermediate Risk of Relapse

- **Endpoint: time to metastases**
- **Duration: 1 vs 3 years**

Start Date: June 2007; recruiting

In the next years....

- Ongoing studies will clarify:
 - The role of combination therapy (also including cytokines...)
 - The optimal sequence of therapy
 - Therapy for resistant disease
 - Long term toxicities...
 - Molecular biomarkers defining groups benefiting from anti-VEGF therapy