

Immunotherapy in Lung Cancer

Giorgio V. Scagliotti University of Torino Department of Oncology giorgio.scagliotti@unito.it

Agenda

- The immune system
- Strategy to modulate/boost the immune system
- © Check point inhibitors
- The clinical data
- Toxicity
- ® Biomarkers

Evidence to Suggest That an Immune Response Against Solid Tumors Exists

- Spontaneous regression of tumors without therapy
- Meterogeneity of clinical progression of disease among patients with the same histological type
- Improved survival in patients who develop empyema
- The isolation of tumor-infiltrating lymphocytes in lung cancer
- Encouraging results in patients immunized with autologous tumor cell vaccines expressing GM-CSF

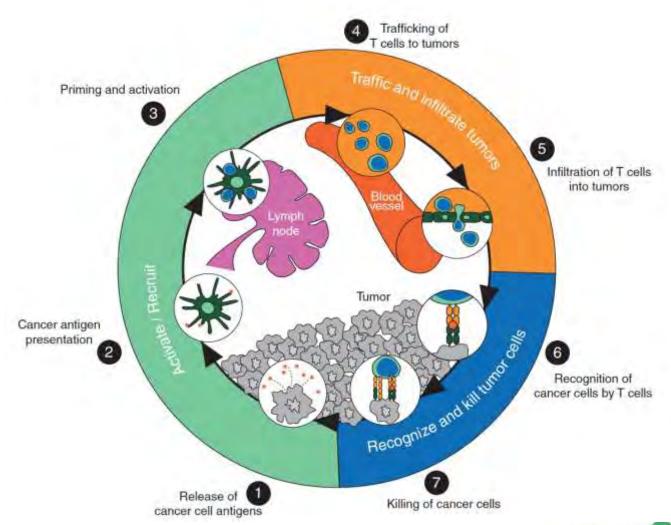
The Immune Editing Hypothesis (3E's)

Equilibrium Elimination Escape CD8+ CD8+ CD8+ Genetic instability/tumor heterogeneity

Immune selection

Potential Mechanisms for Immune Evasion

- Defective antigen presentation
- © Checkpoint pathways
- Immunosuppressive cell infiltrates
 - Treg high expression of CTLA-4 and TGF-B
 - MDSCs able to suppress T cell response
- Outpregulation/secretion of immunosuppressive cytokines


Potential Mechanisms for Immune Evasion

- Defective antigen presentationChemotherapy, epigenetic therapy, vaccines
- Checkpoint pathwaysCheckpoint inhibitors
- Immunosuppressive cell infiltrates T reg and MDSCs Ab or cytotoxics
- Upregulation/secretion of immunosuppressive cytokines COX-2 inhibition, TGF-B blockade and chemotherapy

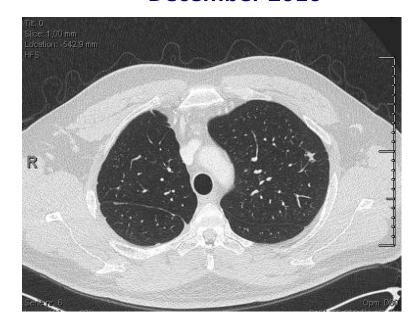
The Cancer Immunity Cycle

Vaccines for NSCLC

- Dependent on identifying an appropriate antigen, differentially expressed between tumour and normal tissues.
- A challenging area, previous attempts unsuccessful
 - ✓ Advanced stage patients with poor immune function
 - ✓ Little consideration of type of immune response and antigen presentation
 - ✓ No approved therapeutic vaccines (but there are preventive vaccines, e.g. HPV vaccine)
- Most extended phase III studies are on LBLP25 (Stimuvax) and recMAGE-A3 and both were negative.

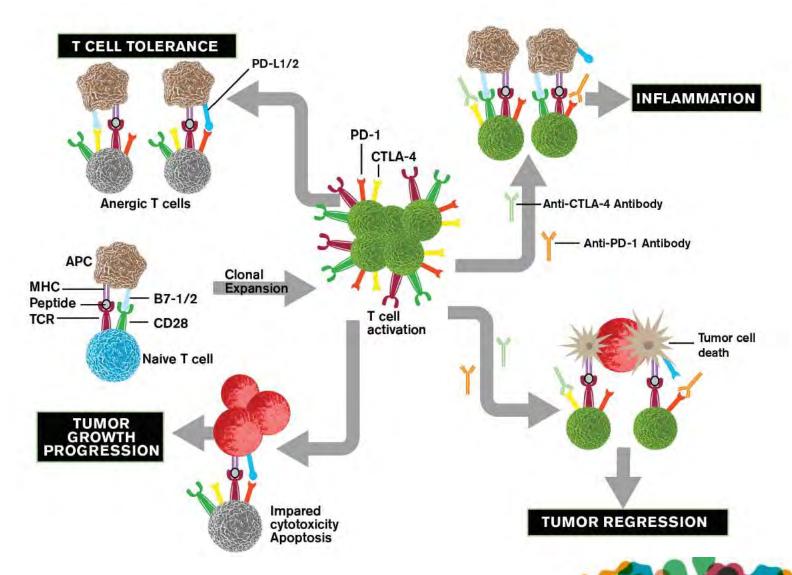
Lung cancer vaccination Ongoing & planned studies

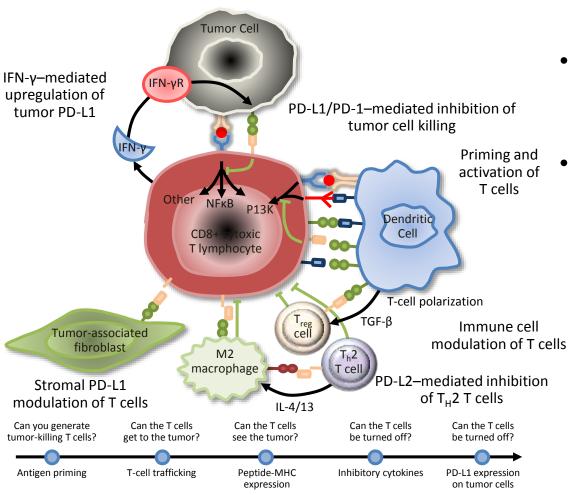
	MAGE-A3	BLP25	Lucanix	rHU-EGF	TG4010
Class	full protein	peptide in liposome	allogeneic cells	full protein	peptide by viral vector
Disease setting	post-surgery	post-CTRT	advanced	advanced	advanced
Specificity	++	+	?	+	+
Expression	+/-	+	ý	++	+
Immuno-activity	++	++	++	++	++
Phase II	RCT/placebo	RCT/BSC	Open/dose	RCT/BSC	RCT/BSC
Phase III	2270 Negative	1322 Negative	532 Negative	ongoing – target 230	planned – target 1000



Immune checkpoints An active NEW class of agents

December 2014


December 2016



The role of checkpoint pathways in chronic inflammation and cancer

PD-1 Blockade: Binding to PD-L1 (B7-H1) and PD-L2 (B7-DC) Revives T Cells

- PD-L1 expression on tumor cells induced by interferon-γ
- Activated T cells that could kill tumors are specifically disabled

- PD-1
- PD-L1
- PD-L2
- 🕎 T-cell receptor
- MHC-1
- **CD28**
- ─ Shp-2
- B7.1

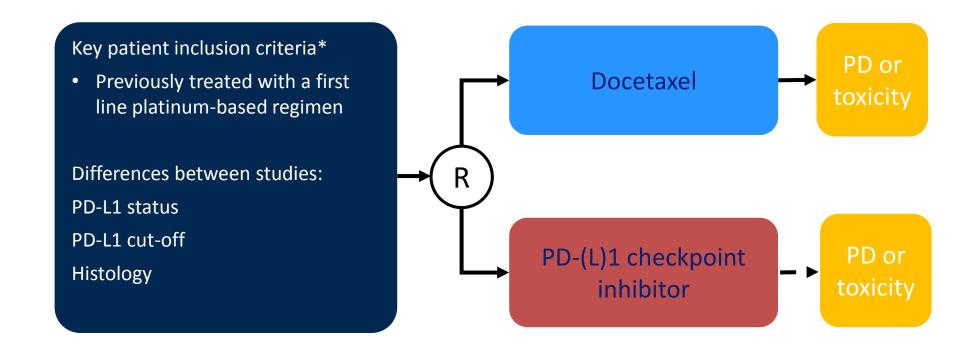
What are the data on PD-1/PD-L1

Second line treatment

- ✓ Nivolumab
- ✓ Pembrolizumab
- ✓ Atezolizumab

First line treatment

- ✓ Pembrolizumab
- ✓ Nivolumab


Status of Key Checkpoint Inhibitors for Advanced NSCLC (≥2nd-line)

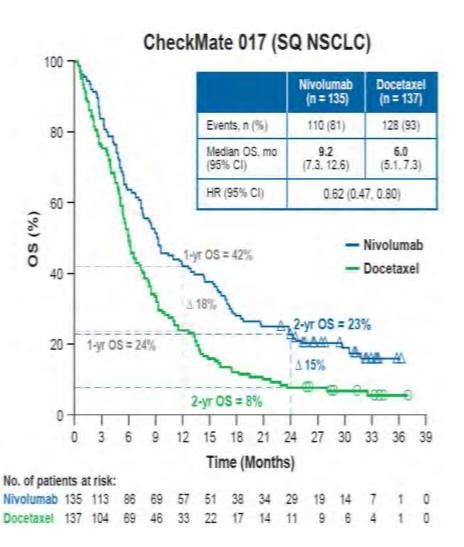
Agent / Study	Phase	Design	Histology	Approval Status		
Nivolumab, anti-PD-1						
NCT01642004 (CheckMate 017)	3	Nivo vs. doc, pretreated NSCLC	Squamous	Approved: US and EU		
NCT01673867 (CheckMate 057)	3	Nivo vs. doc, pretreated NSCLC	Non- squamous	Approved: US and EU		
Pembrolizumab, anti-PD-1 NCT01905657 (KEYNOTE-010)	2/3	Pembro vs. doc, post-platinum	All	Approved: US Approved: EU		
Atezolizumab (MPDL3280A), anti-PD-L		FDA breakthrough therapy designation and				
NCT02008227 (OAK)	3	Atezolizumab vs. doc, post-platinum	All	priority review CHMP positive opinion		
Durvalumab (MEDI4736), anti-PD-L1						
NCT02154490 (Lung-MAP)	2/3	Biomarker-targeted 2 nd -line therapy	Squamous	-		
NCT02352948 (ARCTIC)	3	Durvalumab + / - tremelimumab (anti-CTLA-4) by PD-L1 expression, pretreated NSCLC	All			
Avelumab, anti-PD-L1 NCT02395172 (JAVELIN Lung 200)	3	Avelumab vs. doc, post-platinum	All	-		
Ipilimumab, anti-CTLA4 NCT02039674 (KEYNOTE-021)	1/2	Pembro + ipilimumab, 2 nd -line	All	-		

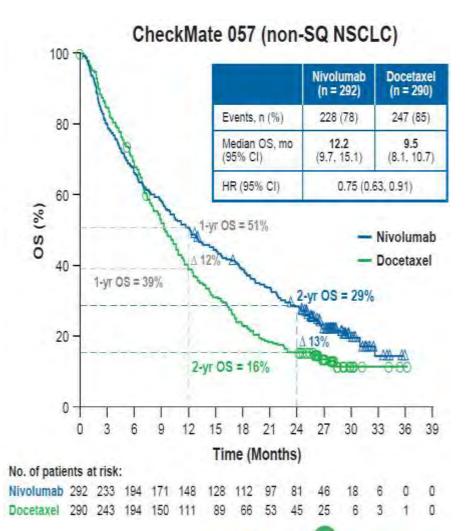
What are the data, second line

Primary endpoint: OS

Secondary endpoint: PFS, response rate, QOL

CheckMate 017 and CheckMate 057 Study Designs


Phase 3 Efficacy Results from CheckMate 017 and 057

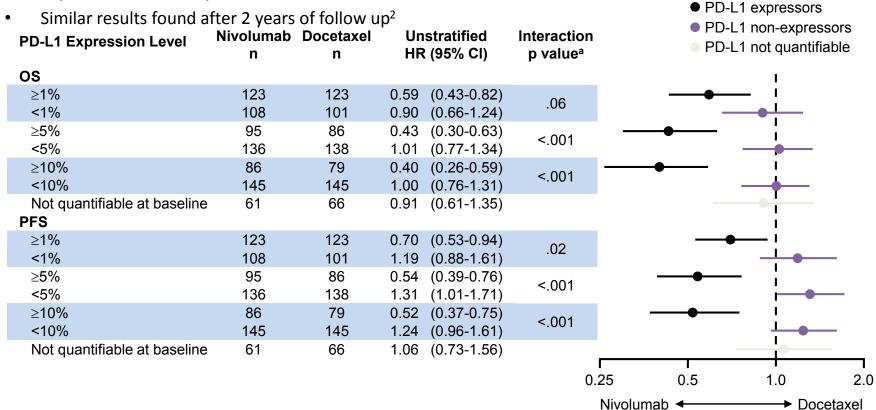

	CheckMa (NCT016		CheckMate 057 (NCT01673867)		
Efficacy Measure	Nivolumab (n=135)	Docetaxel (n=137)	Nivolumab (n=292)	Docetaxel (n=290)	
Median OS, months (95% CI)	9.2 (7.3-13.3)	6.0 (5.1-7.3)	12.2 (9.7-15.0)	9.4 (8.1-10.7)	
HR (95% CI)	0.59 (0.44-0.79) p<.001		0.73 (0.59-0.89) p=.002		
1-year OS, % (95% CI)	42 (34-50)	24 (17-31)	51 (45-56)	39 (33-45)	
Median PFS, months (95% CI)	3.5 (2.1-4.9)	2.8 (2.1-3.5)	2.3 (2.2-3.3)	4.2 (3.5-4.9)	
HR (95% CI)	0.62 (0.47-0.81) p<.001		0.92 (0.77-1.11) p=.39		
1-year PFS, % (95% CI)	21 (14-28)	6 (3-12)	19 (14-23)	8 (5-12)	
Investigator assessed ODD 9/	20	9	19	12	
Investigator-assessed ORR, %	p=.008		p=.02		

Checkmate 017 & 057: OS at minimum follow up of 2 years

Does Tumour PD-L1 Expression Affect Nivolumab Efficacy? CheckMate 017

Across the prespecified expression levels (1%, 5% and 10%), PD-L1 expression was neither
prognostic nor predictive of any of the efficacy endpoints in patients with squamous NSCLC

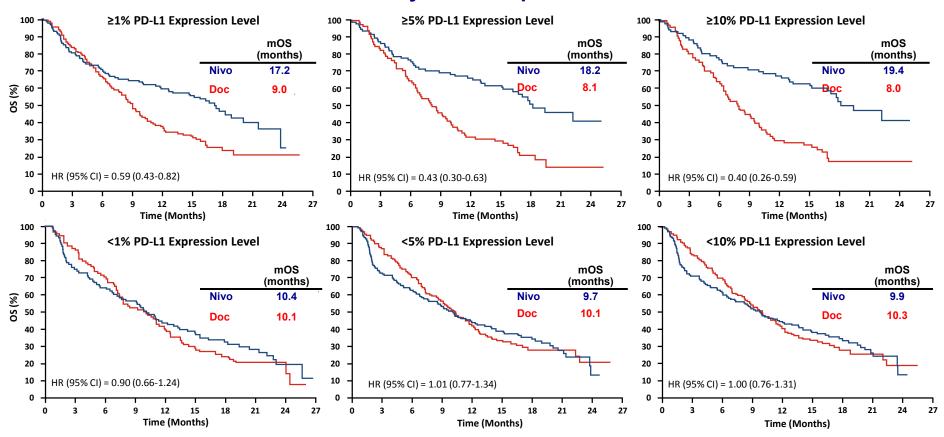
PD-L1 Expression Level	Nivolumab	Docetaxel		Unstratified HR (95% CI)
os	No. patients		İ	
≥1%	63	56		0.69 (0.45-1.05)
<1%	54	52		0.58 (0.37-0.92)
≥5%	42	39		0.53 (0.31-0.89)
<5%	75	69		0.70 (0.47-1.02)
≥10%	36	33		0.50 (0.28-0.89)
<10%	81	75	—	0.70 (0.48-1.01)
Not quantifiable at baseline	18	29		0.39 (0.19-0.82)
PFS				
≥1%	63	56	i	0.67 (0.44-1.01)
<1%	54	52		0.66 (0.43-1.00)
≥5%	42	39		0.54 (0.32-0.90)
<5%	75	69		0.75 (0.52-1.08)
≥10%	36	33		0.58 (0.33-1.02)
<10%	81	75	———	0.70 (0.49-0.99)
Not quantifiable at baseline	18	29		0.45 (0.23-0.89)
		(0.125 0.25 0.50 1.00 2.00	
	_		Nivolumab ← → Doceta	axel


83% of randomised patients (225 of 272 patients) had quantifiable PD-L1 expression

Does Tumor PD-L1 Expression Affect Nivolumab Efficacy? CheckMate 057

 Higher PD-L1 expression was associated with greater benefit from nivolumab in patients with nonsquamous NSCLC¹

^{1.} Borghaei H et al. N Engl J Med 2015;373:1627-39



^{2.} Borghaei H et al. J Clin Oncol 2016;34 (suppl):abstr 9025

Does Tumour PD-L1 Expression Affect Nivolumab Efficacy? CheckMate 057

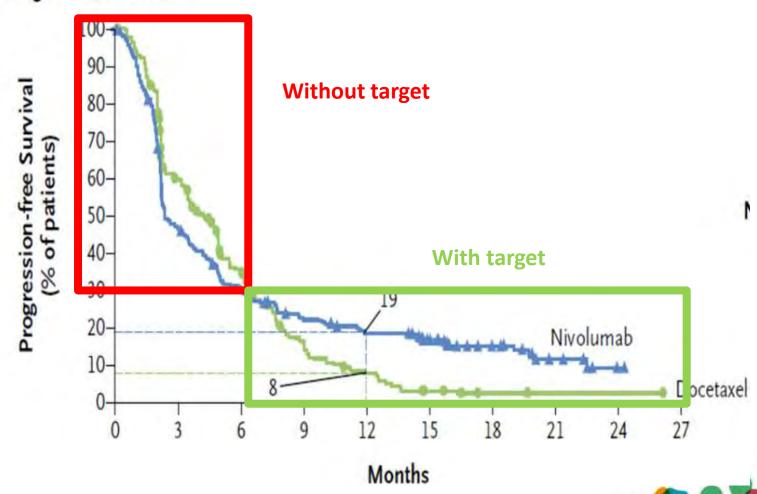
OS by PD-L1 Expression

2-Year OS Rates^a Overall and by PD-L1 Expression Level in CheckMate 057 (Non-SQ NSCLC)

In CheckMate 057, consistent with the primary analysis, 2 PD-L1 expression level was associated with the magnitude of OS benefit at 2 years starting at the lowest level studied (1%)

^aKaplan-Meier estimates, with error bars indicating 95% CIs

^bFor the comparison of the full Kaplan–Meier survival curves for each treatment group



PD-1/PD-L1 is targeted treatment

haei et al

Nivolumab – Checkmate 057

Progression-free Survival

Pembrolizumab in NSCLC Phase 1 KEYNOTE-001 Trial

Inclusion criteria

- Locally advanced or metastatic NSCLC
- ECOG PS 0/1
- Adequate organ function
- Biopsy sample required to assess PD-L1 expression

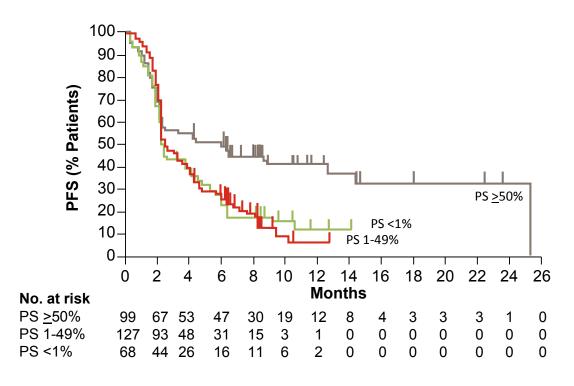
Multiple expansion cohorts

Pembrolizumab monotherapy (10 mg/kg IV every 2 or 3 weeks)

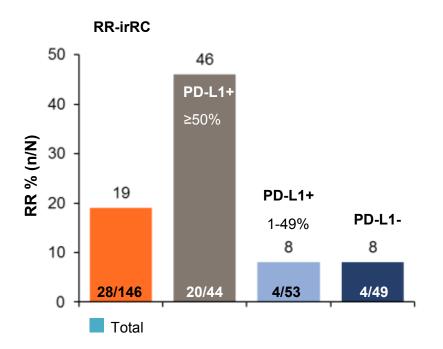
Treatment until disease progression or discontinuation due to toxicity / other reasons

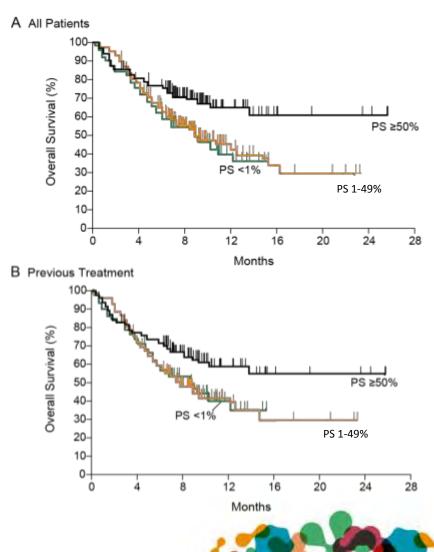
Pembrolizumab monotherapy (2 mg/kg IV every 3 weeks)

Primary endpoint Safety, side-effect profile, antitumour activity (response rate)


Secondary endpoints Pharmacokinetic parameters, PFS, OS, duration of response

Pembrolizumab in NSCLC: PD-L1 Status (Phase 1 Results)


- Pembrolizumab, a humanised monoclonal antibody against PD-1, has been evaluated in 495 patients with advanced NSCLC (untreated [n=101] and pretreated [n=394]) in a Phase 1 study (KEYNOTE-001, NCT01295827)
- In previously treated patients
 - ORR was 18%, median PFS 3.0 months, and median OS 9.3 months
 - PFS and OS were longer in patients with PD-L1 expression in ≥50% of tumour cells



Pembrolizumab in NSCLC: OS per Proportional Scores (TPS)

Pembrolizumab in NSCLC: PD-L1 Status (Phase 1 Results)

Pembrolizumab Improves OS in Pretreated, PD-L1-Positive NSCLC - Keynote 10

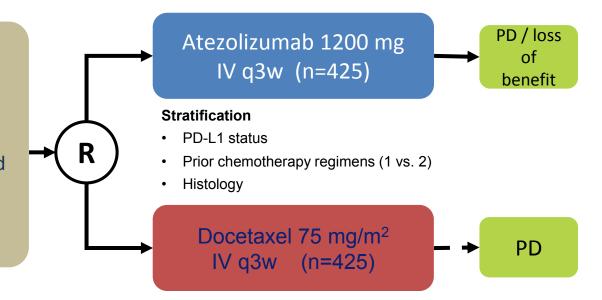
	Total population			PD-L1 ≥50%		
Efficacy Measure	Pembro 2 mg/kg (n=345)	Pembro 10 mg/kg (n=346)	Doc (n=343)	Pembro 2 mg/kg	Pembro 10 mg/kg	Doc
Median OS, months	10.4	12.7	8.5	14.9	17.3	8.2
HR vs. doc (95% CI)	0.71 (0.58-0.88) p=.0008	0.61 (0.49-0.75) p<.0001		0.54 (0.38-0.77) p=.0002	0.50 (0.36-0.70) p<.0001	
Median PFS, months	3.9	4.0	4.0	5.0	5.2	4.1
HR vs. doc (95% CI)	0.88 (0.74-1.05) p=.07	0.79 (0.66-0.94) p=.004		0.59 (0.44-0.78) p=.0001	0.59 (0.45-0.78) p<.0001	

 In a post-hoc analysis, pembrolizumab improved OS vs. docetaxel in patients with PD-L1 1-49%, despite a lack of PFS and ORR benefit in this group²

^{1.} Herbst RS et al. Lancet 2016;387:1540-50

^{2.} Garon EB et al. J Clin Oncol 2016;34 (suppl):abstr 9024

OAK, a randomized phase III study comparing atezolizumab with docetaxel in 2L/3L NSCLC


Study objective

 To evaluate the efficacy and safety of atezolizumab vs. docetaxel in patients with previously treated NSCLC

Key patient inclusion criteria

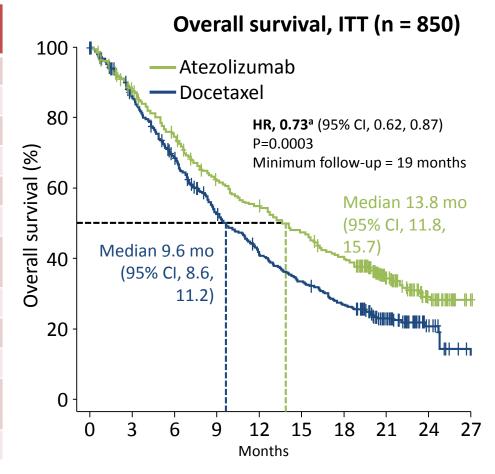
- Locally advanced or metastatic NSCLC
- 1–2 prior lines of chemotherapy including at least 1 platinum based
- Any PD-L1 status

(n=1225)

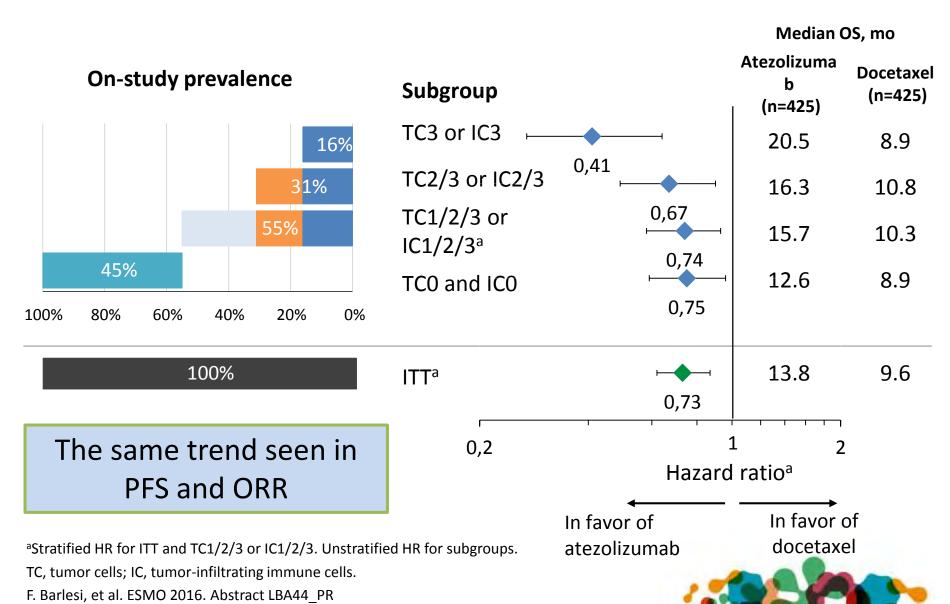
Primary endpoint

 OS in ITT and PD-L1-expression on ≥1% TC or IC

Secondary endpoints


ORR, PFS, DoR, safety

OAK, a randomized Phase 3 study comparing atezolizumab with docetaxel in 2L/3L NSCLC


Characteristics	Atezolizumab n = 425	Docetaxel n = 425	
Median age, y	63	64	
≥65 y	45%	49%	
Male	61%	61%	
Nonsquamous	74%	74%	
Squamous	26%	26%	
ECOG PS, 0/1	37%/64%	38%/62%	
No. of prior therapies, 1/2	75%/25%	75%/25%	
History of tobacco use			
Never	20%	17%	
Current/previous	14% / 66%	16% / 67%	
Known EGFR status, %			
Mutant/WT	10% / 75%	10% / 73%	

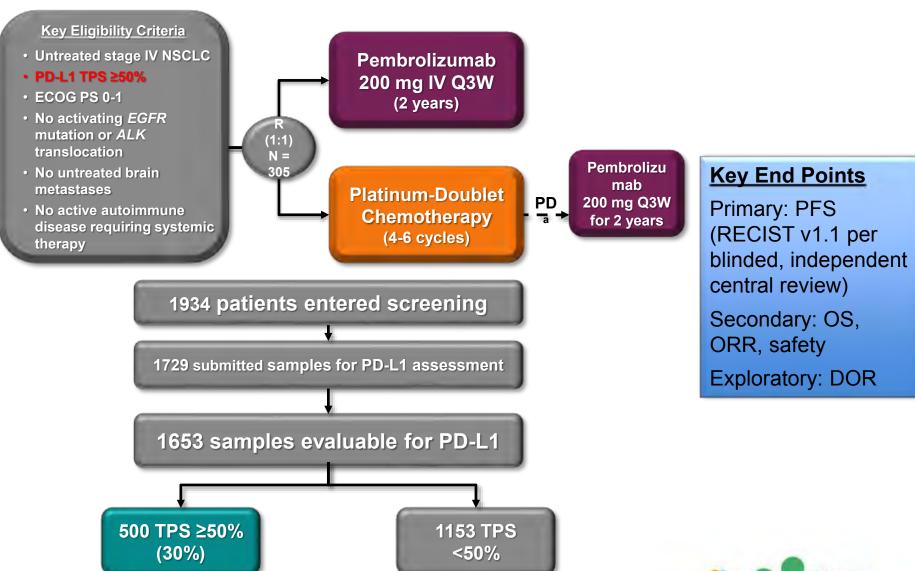
Primary analysis from OAK, a Phase 3 study of atezolizumab vs. docetaxel in 2L/3L NSCLC

Anti-PD-L1 agents compared to platinum CT in 1st-Line advanced NSCLC (PD-L1+)

Only PD-L1+ are eligible: marker positive design in both trials Nivolumab (PD-L1 ≥5%) Pembrolizumab (PD-L1 ≥50%)

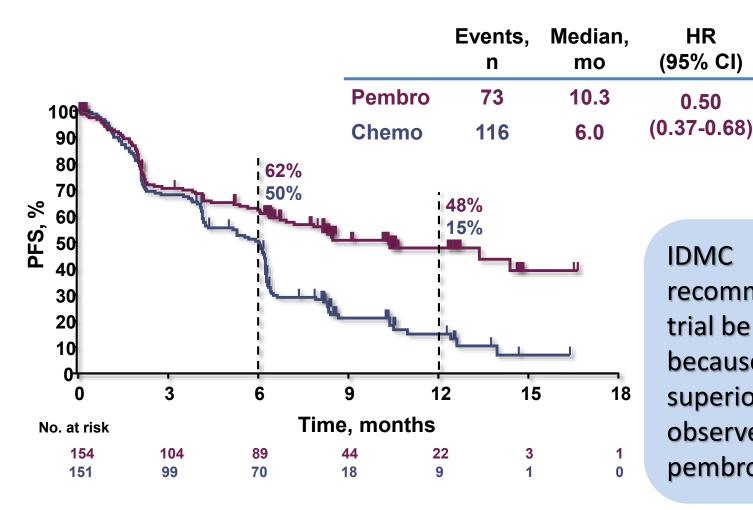
CheckMate 026: Phase 3 trial Stage IIIB/IV NSCLC N=495 **Platinum Nivolumab Doublet** 3 mg/kg IV Q3W Q2W **NEGATIVE Progression-free survival (PFS)**

KeyNote 024: Phase 3 trial Stage IIIB/IV NSCLC N = 300**Platinum** Pembro **Doublet** 200 mg IV Q3W Q3W **POSITIVE**


Progression-free survival (PFS)

Reck M. et al. ESMO 2016. Abstract LBA8 PR

KEYNOTE-024: advanced NSCLC with a PD-L1 tumor proportion score (TPS) ≥50%



KEYNOTE-024: Progression-Free Survival

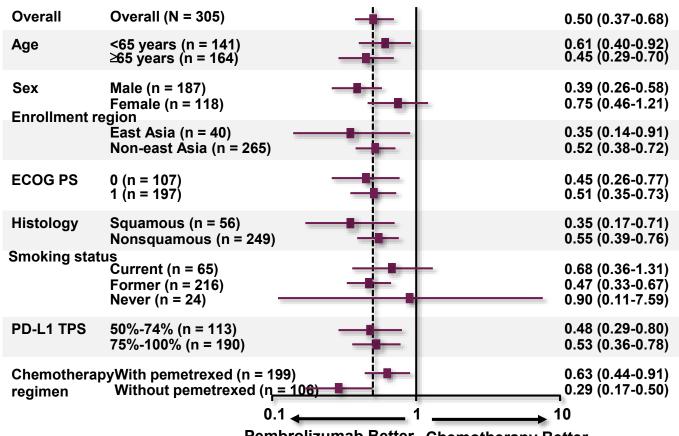
HR

0.50

IDMC recommended the trial be stopped because of OS superior efficacy observed with pembrolizumab

P

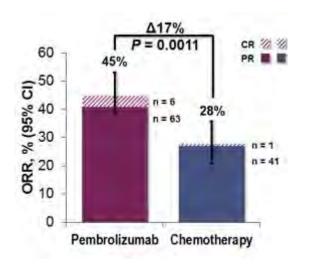
< 0.001

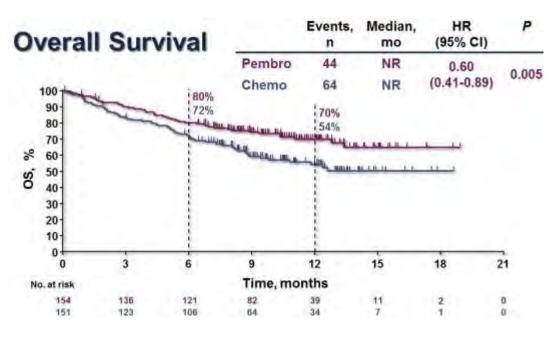

Assessed per RECIST v1.1 by blinded, independent central review. Data cut-off: May 9, 2016.

KEYNOTE-024:

Progression-Free Survival in Subgroups

Most of the subgroups benefit from the front line treatment with Pembro when compared to cytotoxic chemotherapy


Pembrolizumab Better Chemotherapy Better Hazard Ratio (95% CI)


Vertical dotted line represents HR in the total population. Data cut-off: May 9, 2016.

Pembrolizumab vs platinum-based CT as first-line therapy – OS and ORR

- →ORR is improved, with a control arm that performs as expected (from other phase III trials)
- →Time to Response is identical between Pembro & Ct
- →PFS is improved by 4.3 months (HR of 0.50)
- → Strongest signal of PFS benefit observed in SCC (HR of 0.35)
- →Cross-over was limited to 50% of the patients

CheckMate 026: nivo vs investigator's choice (IC) of platinum-based doublet chemotherapy as first-line therapy for Stage IV/recurrent PD-L1-positive NSCLC

Key eligibility criteria:

- Stage IV or recurrent NSCLC
- No prior systemic therapy for advanced disease
- No EGFR/ALK mutations sensitive to available targeted inhibitor therapy
- ≥1% PD-L1 expression^a
- CNS metastases permitted if adequately treated at least 2 weeks prior to randomization

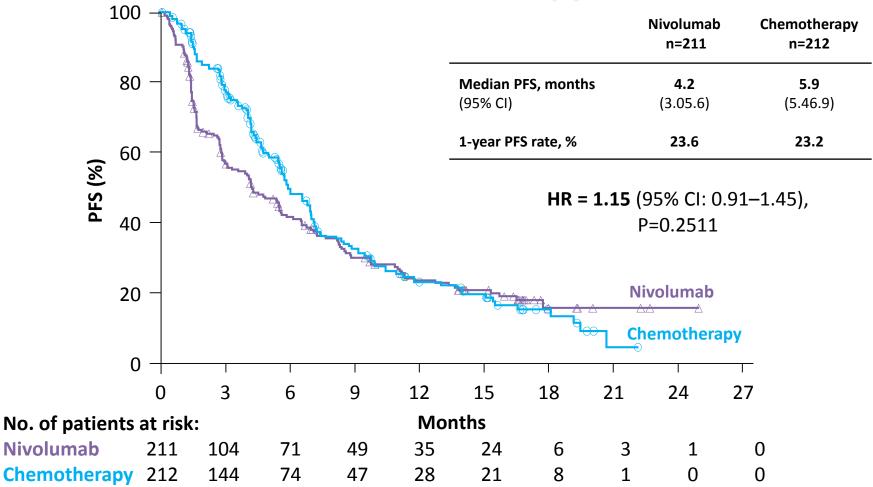
Nivolumab Disease progression or 3 mg/kg IV Q2W unacceptable toxicity n=271**Tumor scans Q6W** R until wk 48 then (1:1)**Q12W** Chemotherapy Crossover (histology Disease nivolumab^c dependent)b progression Maximum of 6 cycles (optional) n=270

Stratification factors at randomization:

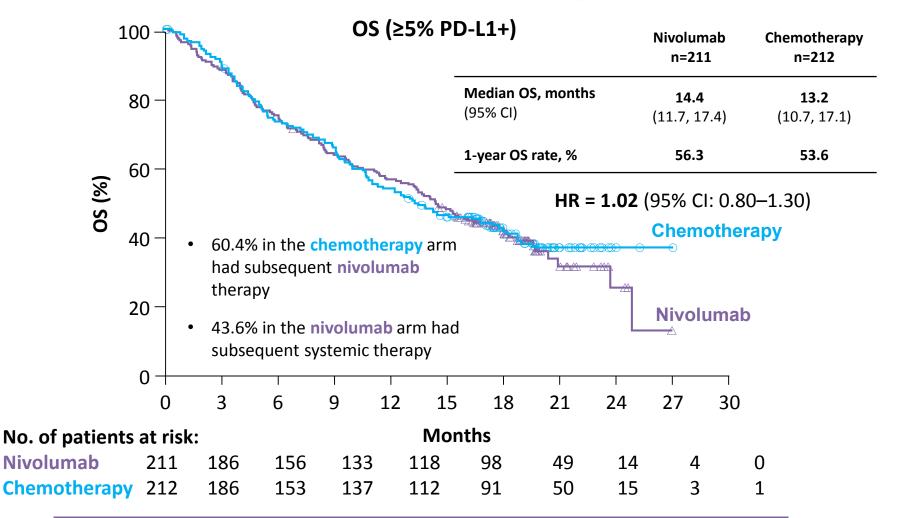
- PD-L1 expression (<5% vs ≥5%)^a
- Histology (squamous vs nonsquamous)

Primary endpoint: PFS (≥5%

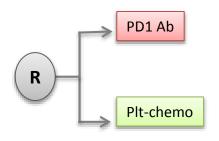
PD-L1+)d


Secondary endpoints:

- PFS (≥1% PD-L1+)d
- OS
- ORRd


CheckMate 026: Nivolumab vs chemotherapy in first-line NSCLC

Primary Endpoint (PFS per IRRC in ≥5% PD-L1+)
All randomized patients (≥1% PD-L1+): HR 1.17 (95% CI: 0.95–1.43)


CheckMate 026: Nivolumab vs chemotherapy in first-line NSCLC

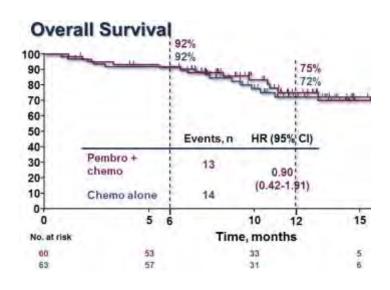
All randomized patients (≥1% PD-L1+): HR = 1.07 (95% CI: 0.86, 1.33)

Impact of PDL1 threshold (performance)

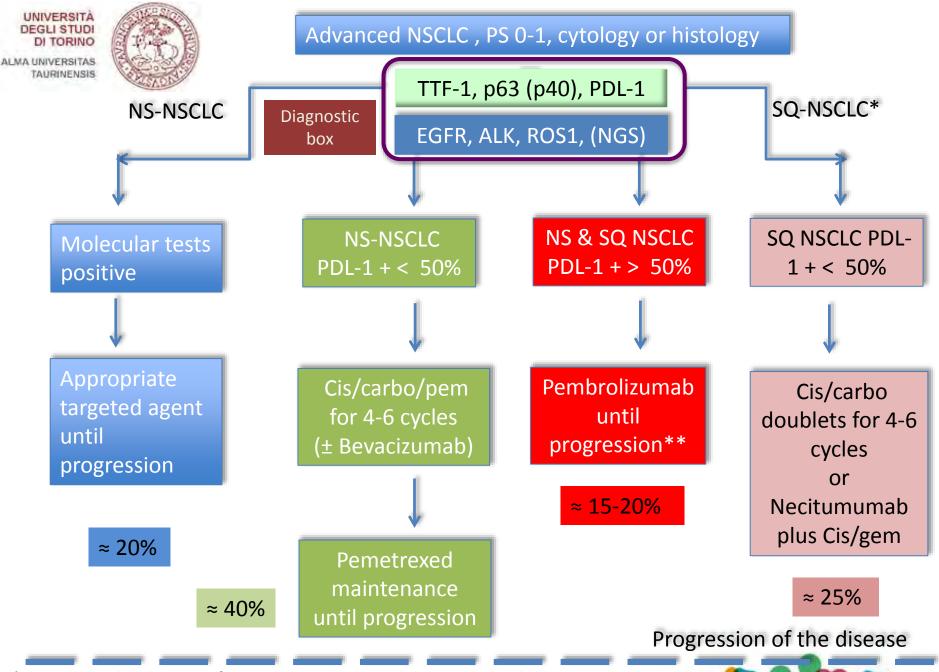
CHECKMATE 026

HR 1.15; 95% CI 0.91–1.45; *P*=0.25 Median PFS 4.2 vs 5.9 months

KEYNOTE 024


HR 0.50; 95% CI 0.37–0.68; *P*<0.001 Median PFS 10.3 vs 6 months

Drug	Nivolumab 3 mg/kg every 2 wks	Pembrolizumab 200 mg every 3 wks
Detection antibody	28–8 (Dako)	22C3 (Dako)
Criteria	≥5% on tumor cells PD-L1+ as ≥5% of TCs	≥50% on tumor cells
Estimated PD-L1 prevalence in NSCLC	~46%	PD-L1+ as ≥50% of TCs ~30%
No. of patients in final analysis	N=415/541 (PD-L1 ≥1%)	N=305/1934 (all comers)


Keynote 21 cohort G – Phase II study of frontline Pembrolizumab +CT vs. CT

- Clear PFS benefit and no OS advantage
 - Median PFS improved by 4.1 months
 - PFS HR is 0.53
 - No difference for OS
 - Estimated rate of OS @ 12 months: 75% (Combo) vs 72% (CT)
 - In CT arm cross-over is 51% to PD(L)1 therapies (pembro & others)
 - Control arm over-performing (selected patient population)

^{*}Consider molecular tests if SQ-NSCLC is diagnosed in a never smoker or < 40 years

^{**} according to the eligibility criteria of KEYNOTE 024

irAEs with Immunotherapy

Skin

- **Dermatitis** exfoliative
- Erythema multiforme
- Stevens Johnson **Syndrome**
- Toxic **Epidermal Necrolysis**
- Vitiligo
- Alopecia

Hepatic Hepatitis, autoimmune

Gastrointestinal (GI)

- Colitis
- Enterocolitis
- Necrotizing colitis
- GI perforation

- · Nephritis, autoimmune
- Renal failure

Eye

- Uveitis
- Iritis

Endocrine

- Hypothyroidism
- Hyperthyroidism
- Adrenal insufficiency
- Hypophysitis

Pulmonary

- Pneumonitis
- Interstitial lung disease
- Acute interstitial pneumonitis

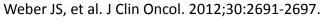
Neurologic

- Autoimmune neuropathy
- Demyelinating **Polyneuropathy**
- **Guillain-Barre**
- Myasthenia **Gravis like** syndrome

Summary of PD-1/PD-L1 Blockade Immune-Mediated Toxicities

Onset:

Average is 6-12 wks after initiation of therapy Can occur within days of the first dose, after several mos of treatment, and after discontinuation of therapy


Occasional (5% to 20%)

- Fatigue, headache, arthralgia, fevers, chills, lethargy
- Rash: maculopapular, pruritus, vitiligo
 - Topical treatments
- Diarrhea/colitis
 - Initiate steroids early, taper slowly
- Hepatitis, liver/pancreatic enzyme abnormalities

- Infusion reactions
- Endocrinopathies: thyroid, adrenal, hypophysitis

Rare (< 5%)

- Pneumonitis
 - Grade 3/4 toxicities uncommon
 - Low grade reversible with steroids and discontinuation
- Anemia

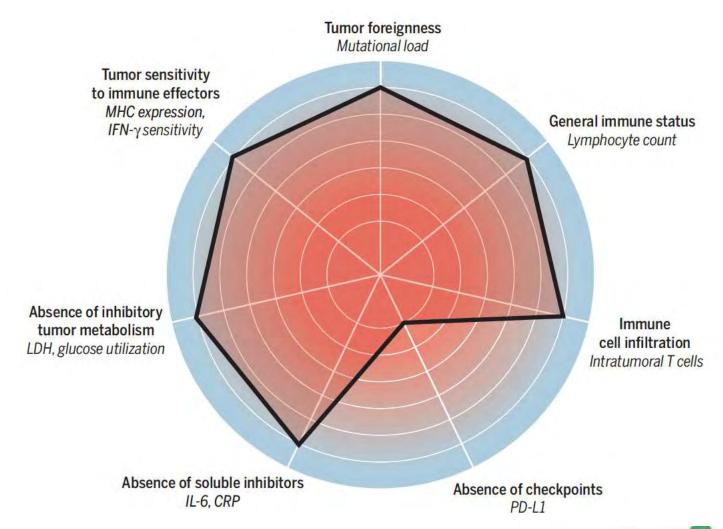
Weber JS, et al. J Clin Oncol. 2015; [Epub ahead of print].

Toxicity Guidelines

- TFTs, CBCs, LFTs and metabolic panels should be obtained at each treatment and q 6-12 weeks for 6 months post-treatment in all patients receiving checkpoint protein antibodies
- ACTH, cortisol should also be checked in patients with fatigue and nonspecific symptoms, plus testosterone in men
- Frequency of follow-up testing should be adjusted to individual response and AEs that occur
- © Corticosteroids can reverse nearly all toxicities associated with these agents, but should be reserved for grade 3/4, or prolonged grade 2, irAEs

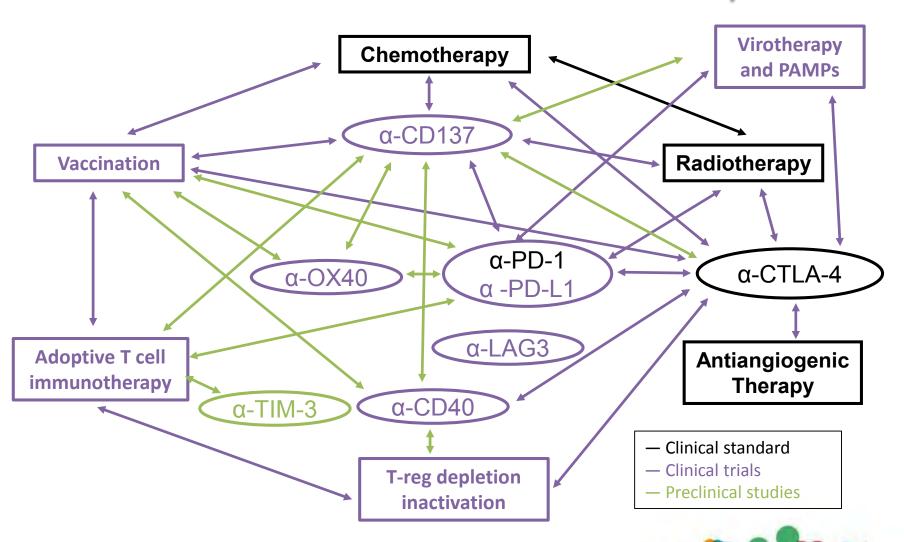
The Biomarker Questions...

- Do we need biomarkers for cancer immunotherapies?
 - ✓ Treatment options for patients with oncogenic drivers go beyond resistance
 - ✓ Responses to chemotherapy in tumors without druggable oncogenic drivers are poor from 2L on
 - ✓ Clearly 1L therapy selection is biomarker guided (targeted therapies vs chemotherapy vs immunetherapies)
- Do we have biomarkers for cancer immunotherapies that help to identify the patients that benefit most from treatments?

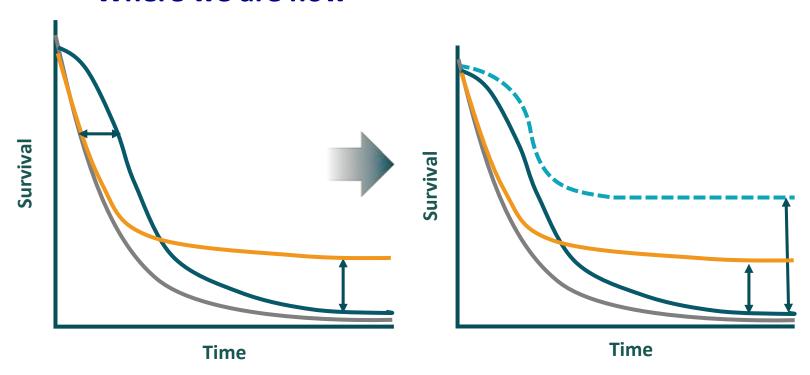

Key Translational Questions for PD-1 Pathway Blockade

- Predictive Biomarkers
 - ✓ Which tumors to treat?
 - ✓ Which patients to treat?
- Other combinations?
- Line of therapy?
- What to do for tumors without immune infiltrates?

The cancer immunogram

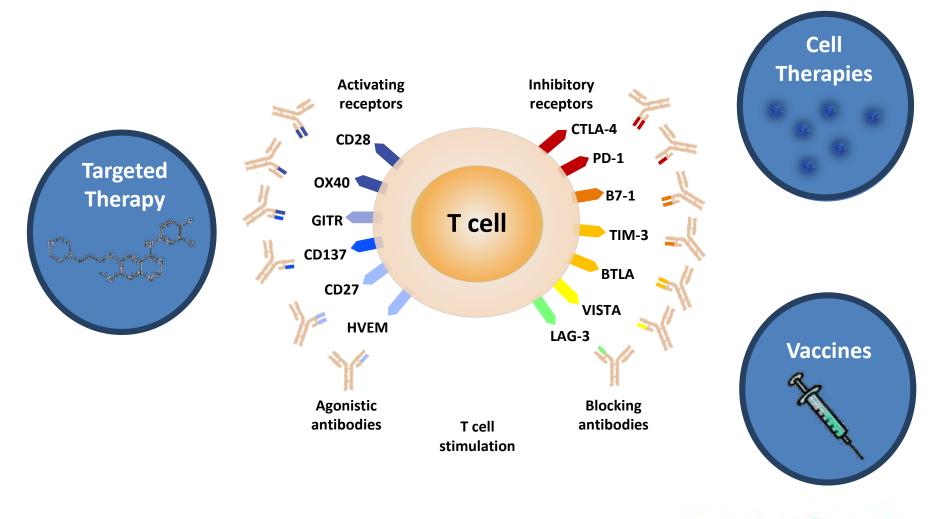


Personalized cancer immunotherapy paradigm


Rationale Combinations: the Way Forward

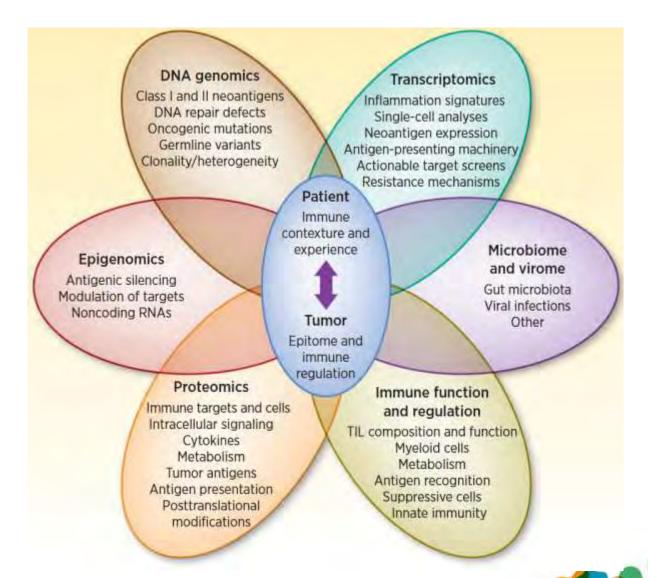
Where we are now

Where we want to be



- Control
- Targeted therapies
- Immune checkpoint blockade
- -- Combinations/sequencing/biomarker selection

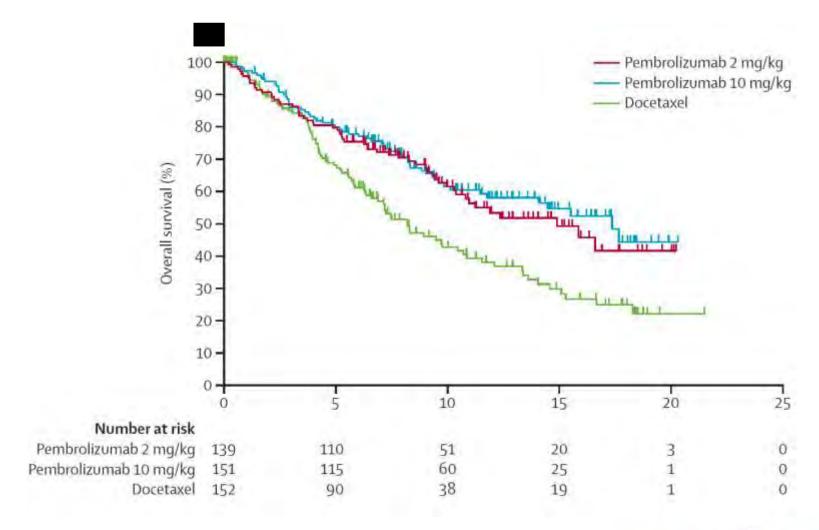
T-Cell Immune Checkpoints as Targets for Immunotherapy



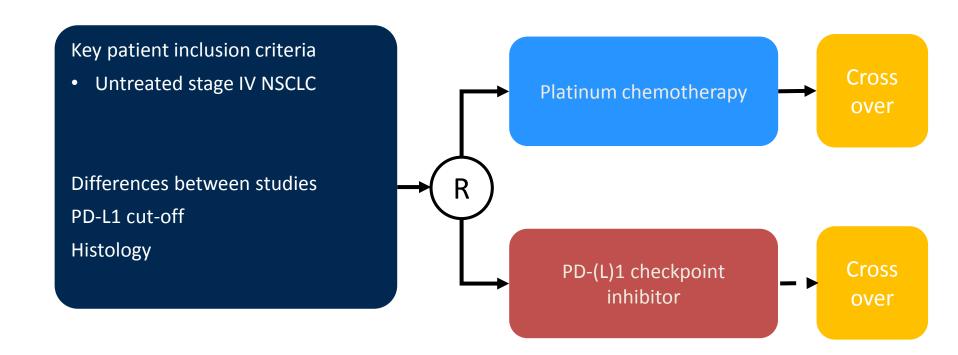
Combination treatment

	Nivolumab 3 mg/kg every 2 weeks plus ipilimumab 1 mg/kg every 12 weeks (n=38)	Nivolumab 3 mg/kg every 2 weeks plus ipilimumab 1 mg/kg every 6 weeks (n=39)
Confirmed objective response*	18 (47% [31-64])	15 (38% [23-55])
Confirmed disease control†	30 (79% [63-90])	22 (56% [40-72])
Best overall response‡		
Complete response	0	0
Partial response	18 (47%)	15 (38%)
Stable disease	12 (32%)	7 (18%)
Stable disease for≥6 months	6 (16%)	3 (8%)
Progressive disease	5 (13%)	11 (28%)
Unable to determine	3 (8%)	6 (15%)
Ongoing responses§	13 (72%)	12 (80%)
Median duration of response (months)¶	NR (11-3-NR)	NR (8-4-NR)
Median progression-free survival (months)	8-1 (5-6-13-6)	3-9 (2-6-13-2)
Progression-free survival at 24 weeks	68% (50-80)	47% (31-62)
1 year overall survival	NC	69% (52-81)

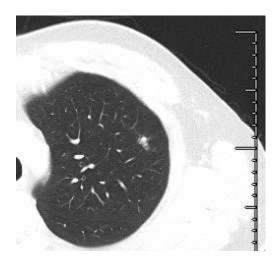
Translational view of the complex patient—tumor immune interactions


Conclusions

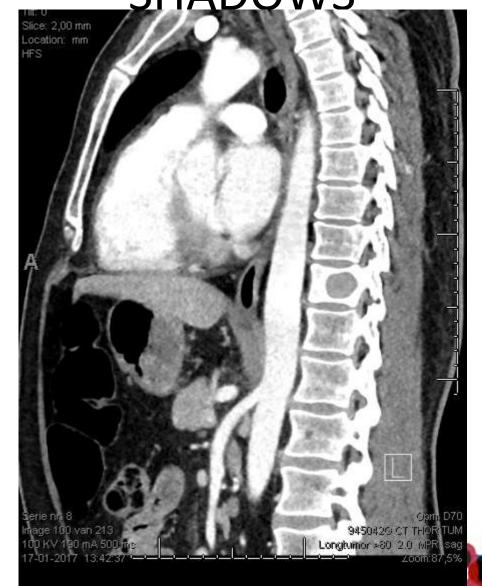
- In second line both PD- 1 and PD-L1 treatment show a consistent increase in OS compared to docetaxel
- PD-1 treatment with pembrolizumab shows an increase in progression free survival compared to chemotherapy in a highly selected study population
- Still unclear
 - ✓ Patient selection
 - PD-L1 expression enriches, but far from perfect
 - Duration of treatment
 - Combination treatment
 - Combination IO
 - Combination with chemotherapy
 - Sequencing


Pembrolizumab – KEYNOTE 010 All histologies, PD-L1 cut off >1%

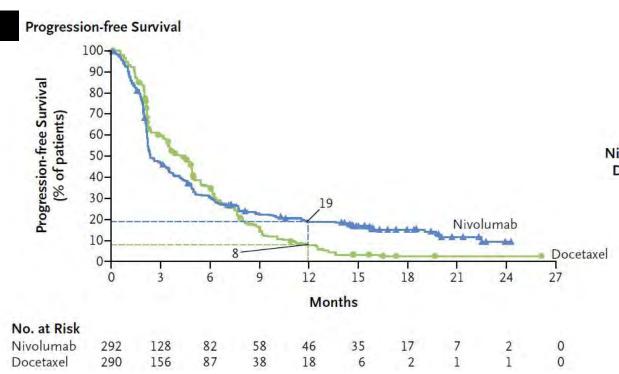
What are the data, first line


Primary endpoint: PFS

Secondary endpoint: OS, response rate, QOL



January 2017

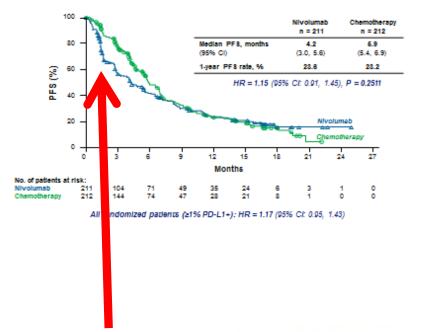


Immune checkpoints
SHADOWS

PFS curve in nonsquamous NSCLC

	No. of	Median Progression-	1-Yr Progression-	
Events/ Total No.		free	free Survival Rate	
		Survival		
of Patients		(95% CI)	(95% CI)	
		mo	%	
Nivolumab	234/292	2.3(2.2-3.3)	19 (14-23)	
Docetaxe	245/290	4.2 (3.5-4.9)	8 (5-12)	

Hazard ratio for disease progression or death, 0.92 (95% CI, 0.77–1.11); P=0.39


PD-1/PD-L1 is targeted treatment

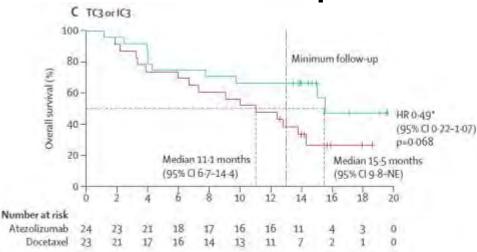
Keynote 024

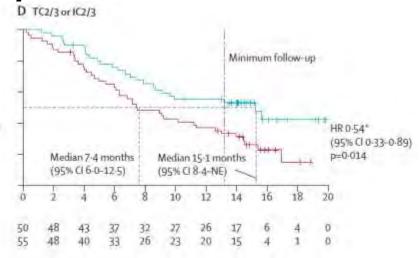
Progression-Free Events, Median, HR Survival (95% CI) Pembro 73 10.3 0.50 < 0.001 (0.37 - 0.68)Chemo 116 6.0 80 60-50-40 30 20 10 12 0 Time, months No. at risk

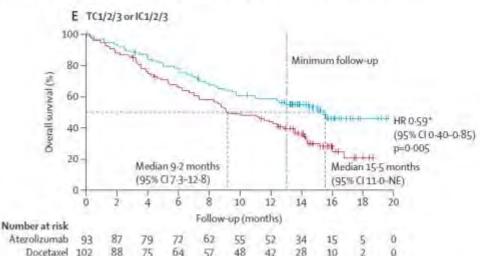
Checkmate 026

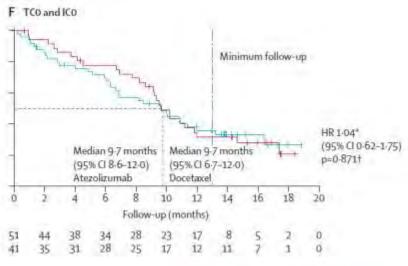
Primary Endpoint (PFS per IRRC in ≥5% PD-L1+) CheckMate 026: Nivolumab vs Chemotherapy in First-line NSCLC

PD-1/PD-L1 targeted therapy

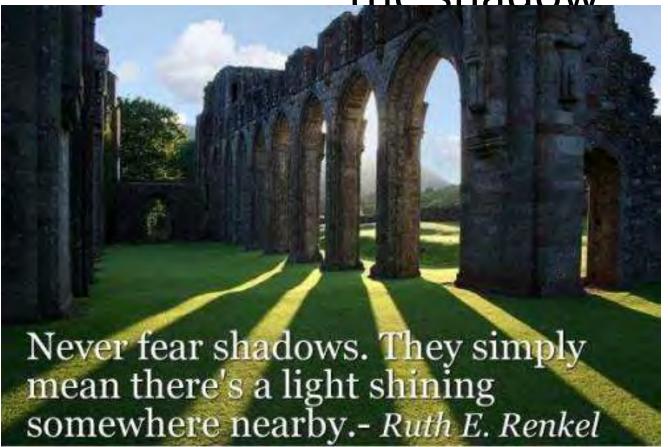







Atezolizumab based on PD-L1


positivity



How to bring light into

the shadow

How to bring light into the shadow

- Patient selection
 - PD-L1 expression enriches, but far from perfect

- Combination treatment
 - Combination IO
 - Combination with chemotherapy

Randomized, phase 2 study of carboplatin and pemetrexed with or without pembrolizumab as first-line therapy for advanced NSCLC: KEYNOTE-021

Pembrolizumab + chemotherapy

Pembrolizumab 200 mg q3w (2 years) + carboplatin AUC5 mg/mL/min + pemetrexed 500 mg/m² q3w (4 cycles)* (n=60)

R

Stratification

1:1

• PD-L1 status (TPS ≥1 vs. <1%)

Chemotherapy

Carboplatin AUC5 mg/mL/min + pemetrexed 500 mg/m² q3w (4 cycles)* (n=63)

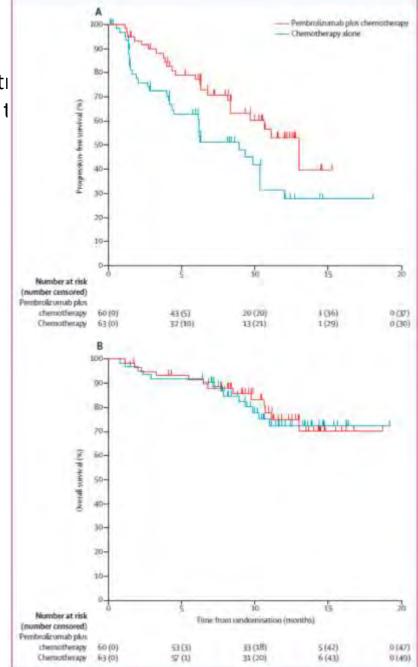
PD

Pembro 200 mg q3w (2 years)

Primary endpoint

ORR (RECIST)

Secondary endpoints


 PFS, OS, safety, relationship between antitumor activity and PD-L1 TPS

*Pemetrexed 500 mg/m² g3w permitted as maintenance therapy

Langer et al. Ann Oncol 2016; 27 Suppl 6) BAA6_PF

PR: pemeti

nd t-line

> Pembro 200 mg q3w (2 years)

anti-

Primary endpoint

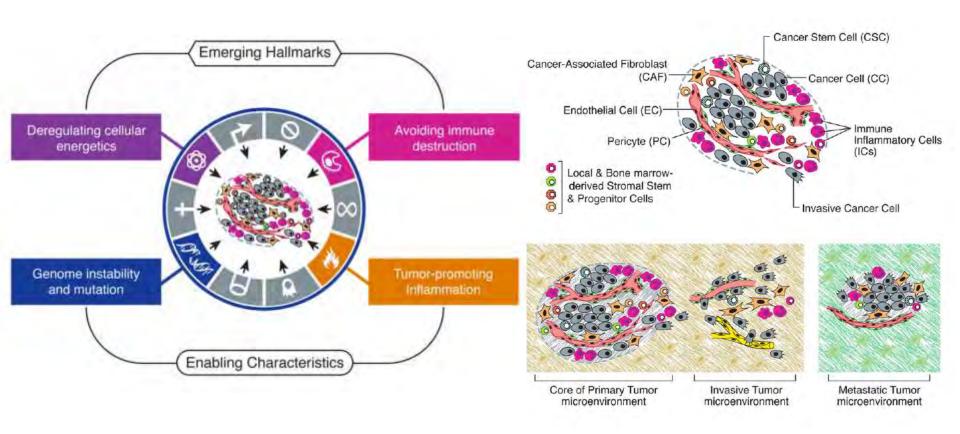
• ORR (RECIST)

*Pemetrexed 500 mg/m² q3w permitted as maintenance the Figure 3: Kaplan-Meier estimates of progression-free survival (A) and overall survival (B)

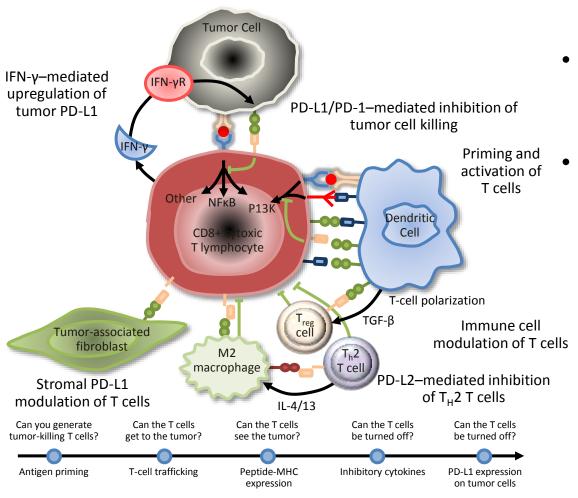
Progression-free survival assessed per Response Evaluation Criteria in Solid Tumors version 1.1 by masked.

Independent central radiology review in the intention-to-treat population.

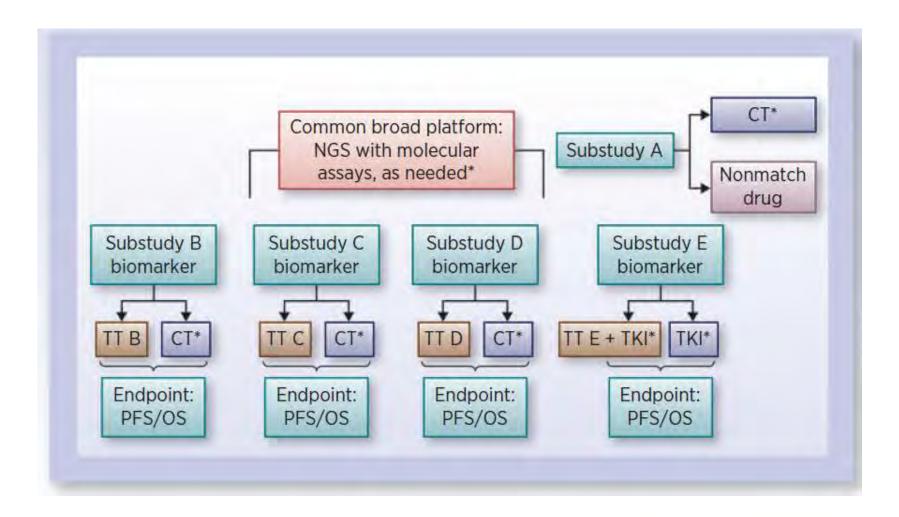
Take home message Immunotherapy can be considered a new standard


treatment in NSCLC

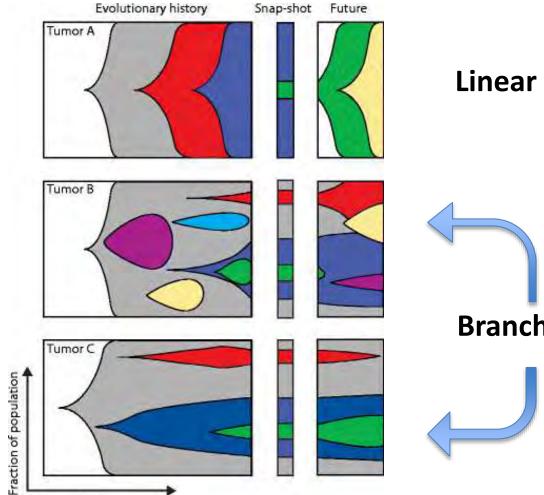
- Still unclear:
 - Patient selection
 - PD-L1 + is not the ideal marker
 - Combination treatment
 - Develop scientific logical not PHARMA-logical combinations
 - Scheduling
 - Cross over


Emerging hallmarks, enabling characteristics and tumor microenviroment

PD-1 Blockade: Binding to PD-L1 (B7-H1) and PD-L2 (B7-DC) Revives T Cells


- PD-L1 expression on tumor cells induced by interferon-γ
- Activated T cells that could kill tumors are specifically disabled

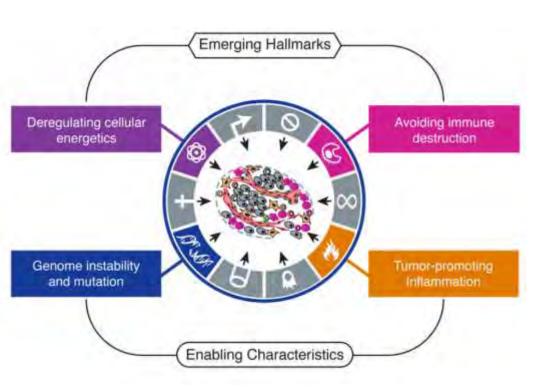
- PD-1
- PD-L1
- PD-L2
- T-cell receptor
- MHC-1
- **₹** CD28
- ► Shp-2
- **⊘** B7.1



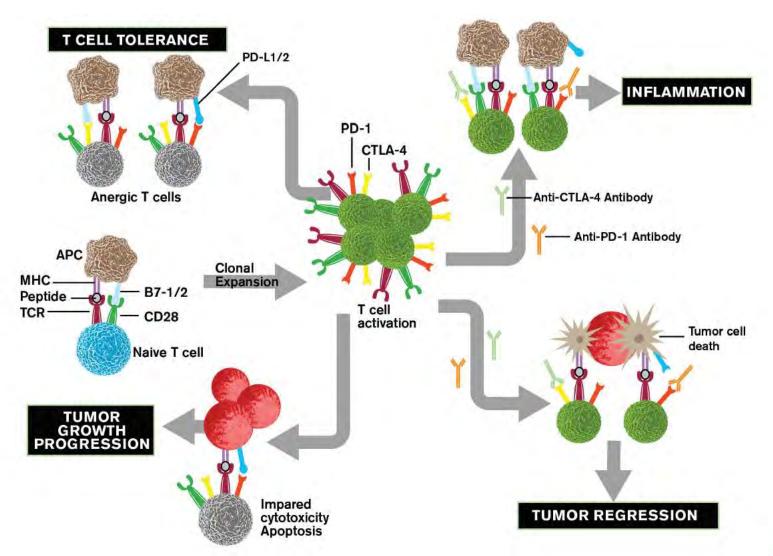
LUNG-MAP

Dynamics of Cancer Evolution of Three Tumors

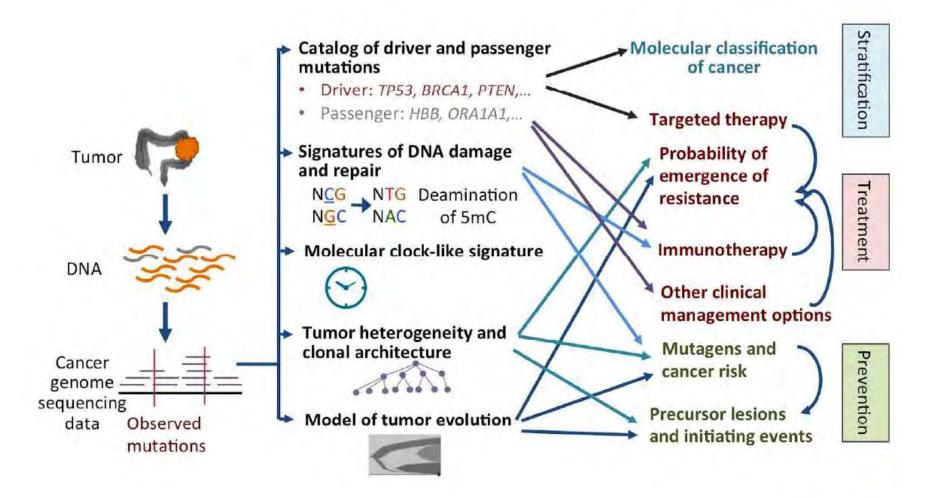
Linear evolution pattern



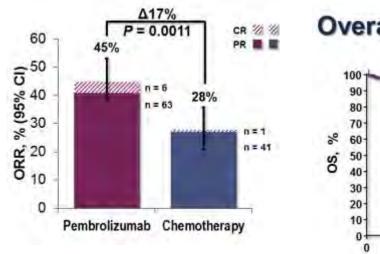
Time

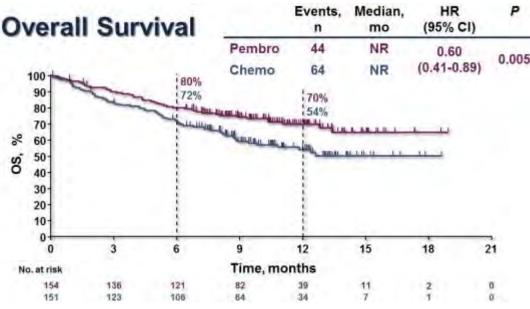

Emerging hallmarks, enabling characteristics and tumor micro-environment

Chronic inflammation and cancer


The unit in Precision Medicine is a "biomarker ensemble"

- Assumption: "Treatment T is effective for condition C, as defined by testing positive for biomarker B, where B is determined by diagnostic assay A."
- A biomarker, hypothesized to play a crucial role in the disease pathway
- A diagnostic assay, used to determine a patient's biomarker status; and
- A therapeutic agent, intended to be more effective for patients who are "biomarker-positive."




Comprehensive analyses of cancer genome sequencing data

Pembrolizumab vs platinum-based CT as first-line therapy – OS and ORR

- → ORR is improved, with a control arm that performs as expected (from other phase III trials)
- → Time to Response is identical between Pembro & Ct
- → PFS is improved by 4.3 months (HR of 0.50)
- → Strongest signal of PFS benefit observed in SCC (HR of 0.35)
- → Cross-over was limited to 50% of the patients

Therapeutic Algorithm for Lung Cancer in 2020

Pembrolizumab vs platinum-based CT as first-line therapy

Key eligibility criteria

- Untreated stage IV NSCLC
- PD-L1 TPS ≥50%
- ECOG PS 0-1
- No activating *EGFR* mutation or *ALK* translocation
- No untreated brain metastases
- No active autoimmune disease requiring systemic therapy

N=305

Platinum-doublet chemotherapy (4–6 cycles)

1934 patients entered screening

1729 submitted samples for PD-L1 assessment

V

500 TPS ≥50% (30%)

1653 samples evaluable for PD-L1

1153 TPS <50%

Key endpoints

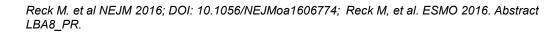
Primary: PFS (RECIST v1.1

per blinded, independent

Pembrolizumab

200 mg Q3W

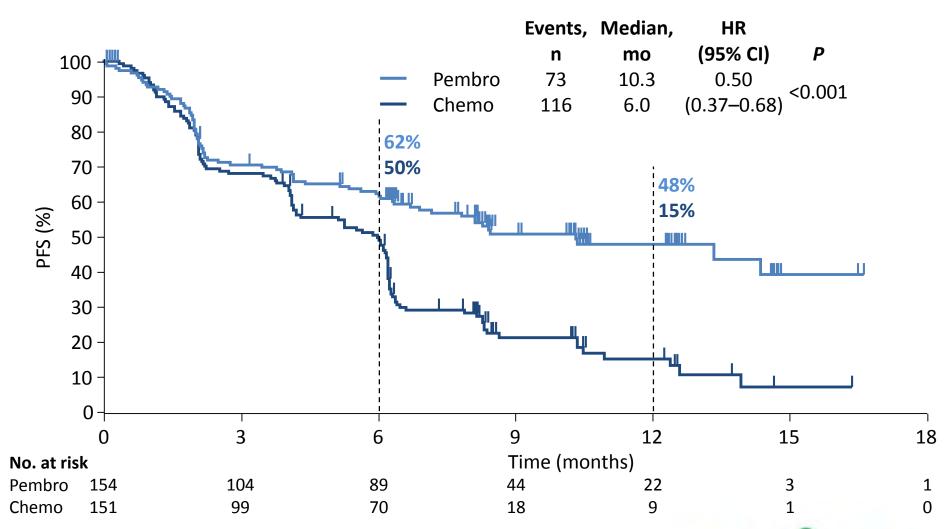
for 2 years

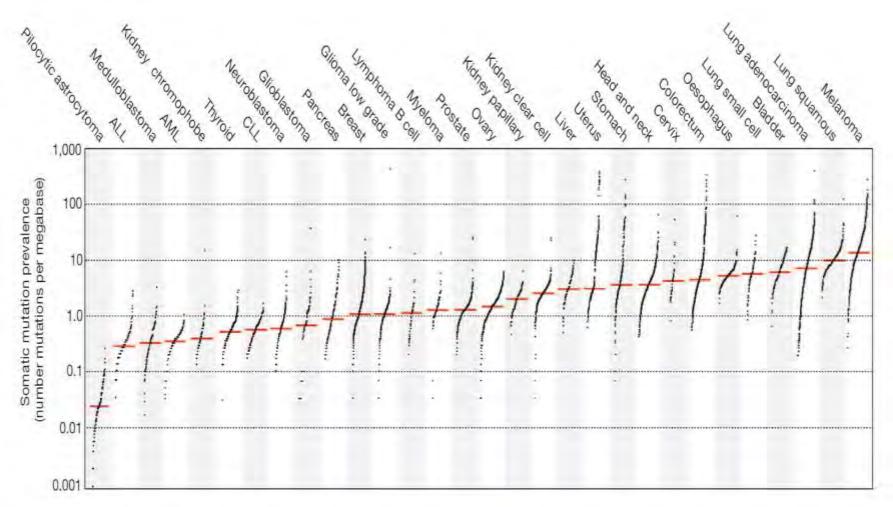

central review)

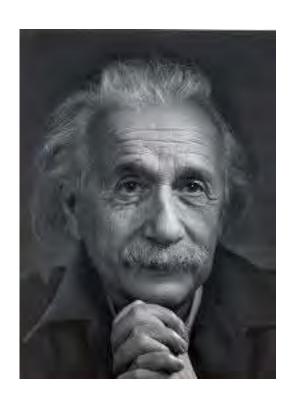
safety

PDa

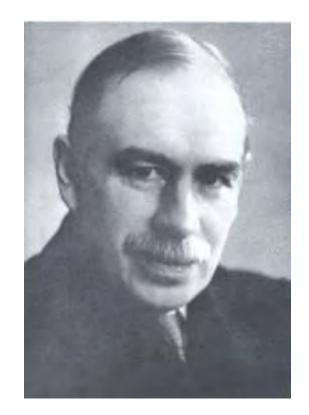
Secondary: OS, ORR,


Exploratory: DOR


Pembrolizumab vs platinum-based CT as first-line therapy - PFS

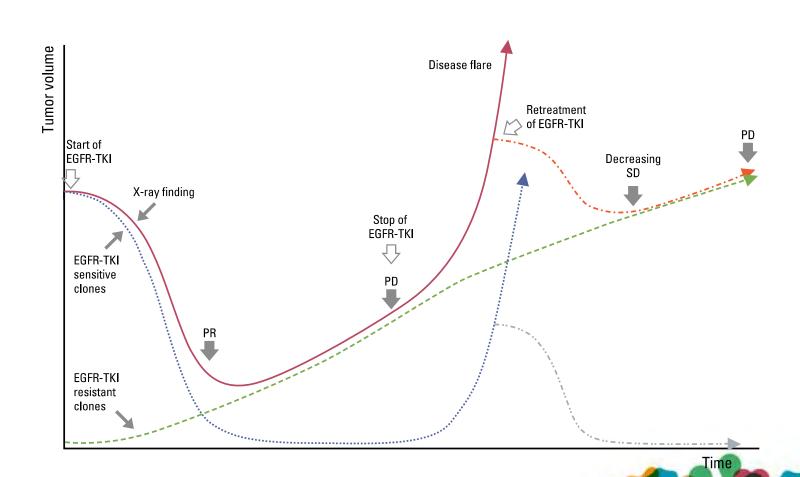


Cancer is a genetic disease: Mutational burden across cancers


The crisis is the best blessing that can happen to people and countries, because the crisis brings progress. Creativity is born from the distress, as the day is born from the dark night. It is in crisis that invention, discovery and large strategies are born. Who ever overcomes crisis, outdoes himself without being overcome

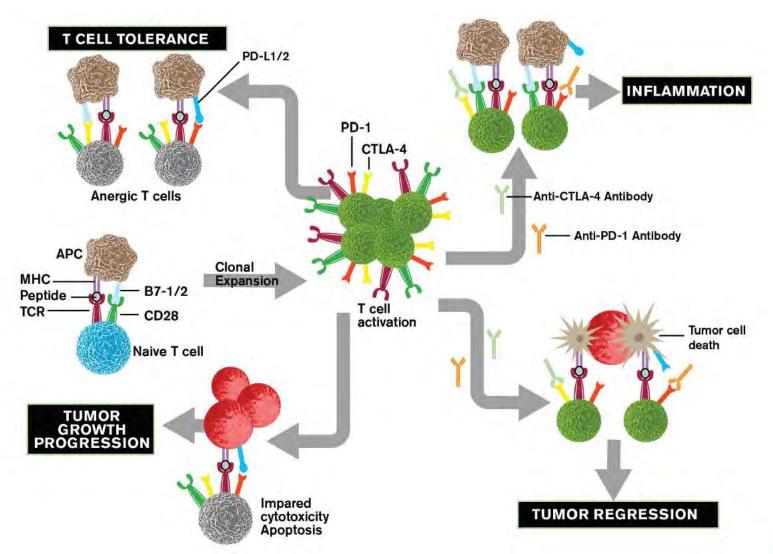
Einstein Albert, 1879-1955

"The difficulty lies not so much in developing new ideas as in escaping from the old ones".

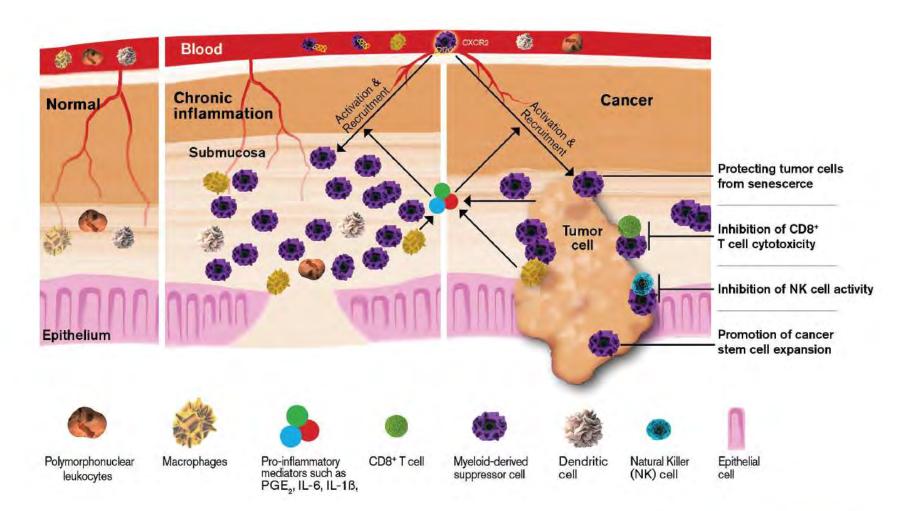


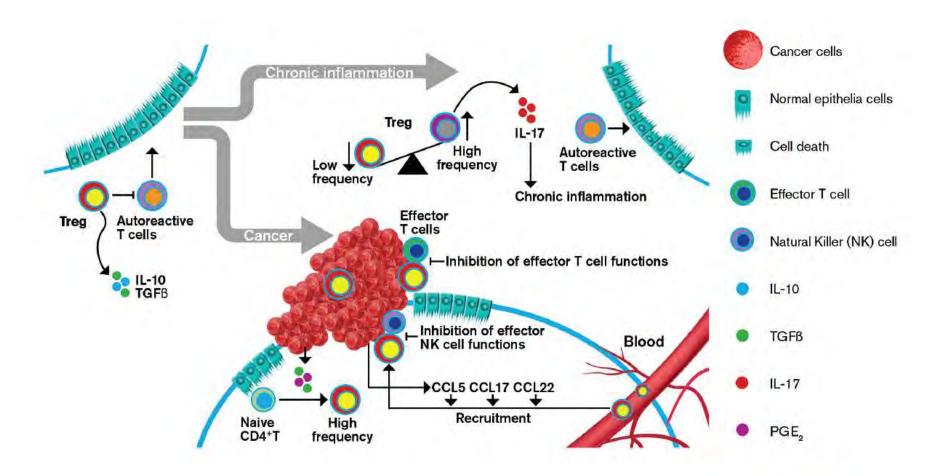
John Maynard Keynes

Clonal Evolution and Disease Progression in EGFR mutant NSCLC

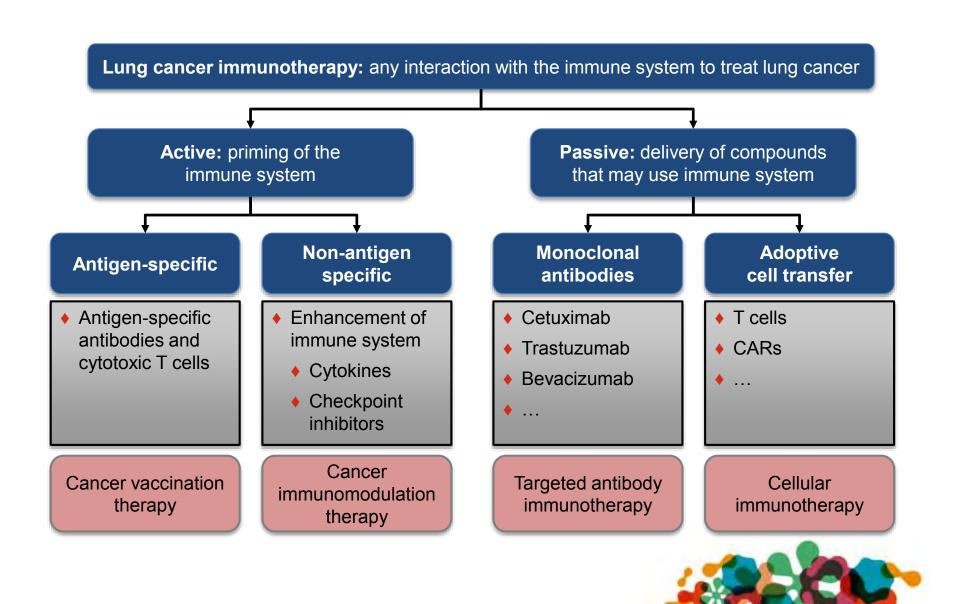

Marginal Indications and a Me-Too Mentality That Stifles Innovation and Creativity

- Academicians must avoid in participating in the development of marginal therapies
- Professional societies and scientific journals must raise standards and avoid giving prominence to studies with marginal outcomes
- The value of cooperative groups must be acknowledged and they should receive support
- The Me-Too mentality that settles for incremental improvements must be addressed
- The viability of the current health care system expenditures and what we can do to address it


Checkpoint pathways in chronic inflammation and cancer


The role of MDSCs in chronic inflammation and cancer

The role of Tregs in chronic inflammation and cancer



1965 2015

Lung Cancer Immunotherapy

Potential Mechanisms for Immune Evasion in Lung Cancer

- Defective antigen presentation
- Checkpoint pathways
- Immunosuppressive cell infiltrates T reg and MDSCs
- Upregulation/secretion of immunosuppressive cytokines

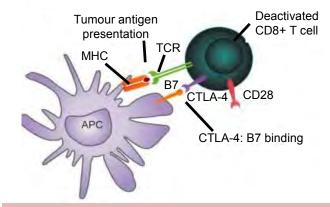
Potential Mechanisms for Immune Evasion in Lung Cancer

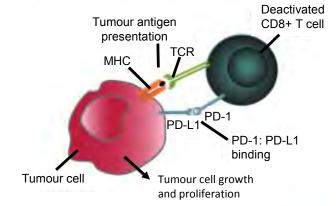
- Defective antigen presentation chemotherapy, epigenetic therapy, vaccines
- Checkpoint pathways Checkpoint inhibitors
- Immunosuppressive cell infiltrates T reg and MDSCs – Ab or cytotoxics
- Upregulation/secretion of immunosuppressive cytokines – COX-2 inhibition, TGF-B blockade and chemotherapy

Vaccines for NSCLC

- Dependent on identifying an appropriate antigen, differentially expressed between tumour and normal tissues.
- A challenging area, previous attempts unsuccessful
 - Advanced stage patients with poor immune function
 - Little consideration of type of immune response and antigen presentation
 - No approved therapeutic vaccines (but there are preventive vaccines, e.g. HPV vaccine)
- Most extended phase III studies are on LBLP25 (Stimuvax) and recMAGE-A3 and both were negative.

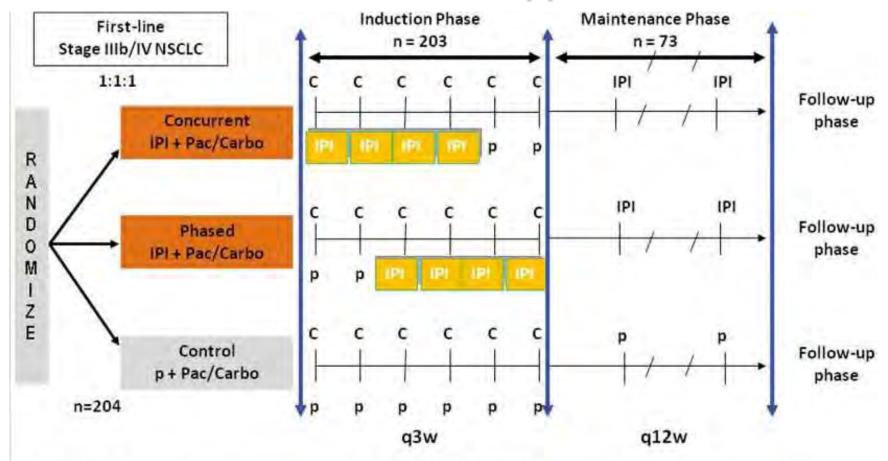
Lung cancer vaccination Ongoing & planned studies


	MAGE-A3	BLP25	Lucanix	rHU-EGF	TG4010
Class	full protein	peptide in liposome	allogeneic cells	full protein	peptide by viral vector
Disease setting	post-surgery	post-CTRT	advanced	advanced	advanced
Specificity	++	+	Ş	+	+
Expression	+/-	+	ý	++	+
Immuno-activity	++	++	++	++	++
Phase II	RCT/placebo	RCT/BSC	Open/dose	RCT/BSC	RCT/BSC
Phase III	2270 Negative	1322 Negative	532 Negative	ongoing – target 230	planned – target 1000


Immunotherapy Targets in NSCLC: CTLA-4 and PD-1 Pathways

- CTLA-4 and PD-1 pathways are immune checkpoint pathways that play critical roles in controlling T cell immune responses
 - Inhibitory receptors
 - Regulate immune responses at different levels
- T cells can become unresponsive after CTLA-4 binds B7 molecules on APC, or when PD-1 binds PD-L1 or PD-L2 on target cells
- CTLA-4 and PD-1 are the best characterised of the immune checkpoint receptors as targets for cancer therapy

CTLA-4 pathway

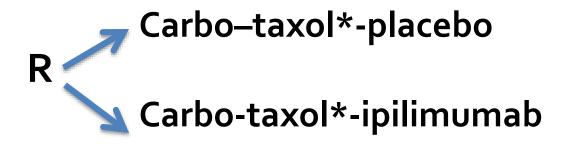

PD-1 pathway

Randomized phase II study of ipilimumab and chemotherapy in advanced NSCLC

IPI, Ipilimumab (10 mg IV); C, Chemotherapy (Pac/Carbo); p, Placebo

Cx regimen: Pac (175 mg/m²)/Carbo (AUC=6) prior to start of ipilimumab

Primary endpoint: Immune-related PFS


Randomized phase II of ipilimumab and chemotherapy in advanced NSCLC – results by histology

irPFS	All	Squamous	Non-squamous
Carbo-taxol	4.6		
Phased ipi	5.7 (HR 0.72)	HR 0.55	HR 0.82
Concurrent ipi	5.5 (HR o.81)	HR 0.85	HR 0.77
Survival			
Carbo-taxol	8.3		
Phased ipi	12.2 (HR 0.87)	HR 0.48	HR 1.17
Concurrent ipi	9.7 (HR o.99)	HR 1.02	HR 0.96

Phase III of ipilimumab in squamous cell lung cancer

- Double-blind
- Overall survival primary endpoint
- Secondary: OS in patients who receive one dose of ipi/placebo, PFS, RR
- 920 patients started Aug 2011

*Carboplatin (AUC 6); paclitaxel (175 mg/m2); ipilimumab (10 mg/kg q3w)

Status of Key Checkpoint Inhibitors for Advanced NSCLC (≥2nd-line)

Agent / Study	Phase	Design	Histology	Approval Status
Nivolumab, anti-PD-1				
NCT01642004 (CheckMate 017)	3	Nivo vs. doc, pretreated NSCLC	Squamous	Approved: US and EU
NCT01673867 (CheckMate 057)	3	Nivo vs. doc, pretreated NSCLC	Non- squamous	Approved: US and EU
Pembrolizumab, anti-PD-1 NCT01905657 (KEYNOTE-010)	2/3	Pembro vs. doc, post-platinum	All	Approved: US Approved: EU
Atezolizumab (MPDL3280A), anti-PD-L1				FDA breakthrough therapy designation and
NCT02008227 (OAK)	3	Atezolizumab vs. doc, post-platinum	All	priority review CHMP positive opinion
Durvalumab (MEDI4736), anti-PD-L1				
NCT02154490 (Lung-MAP)	2/3	Biomarker-targeted 2 nd -line therapy	Squamous	-
NCT02352948 (ARCTIC)	3	Durvalumab + / - tremelimumab (anti-CTLA-4) by PD-L1 expression, pretreated NSCLC	All	
Avelumab, anti-PD-L1 NCT02395172 (JAVELIN Lung 200)	3	Avelumab vs. doc, post-platinum	All	-
Ipilimumab, anti-CTLA4 NCT02039674 (KEYNOTE-021)	1/2	Pembro + ipilimumab, 2 nd -line	All	-

ClinicalTrials.gov Patnaik A et al. *J Clin Oncol* 2015;33(Suppl):8011

Pembrolizumab in Pretreated, PD-L1-Positive NSCLC in the Phase 2/3 KEYNOTE-010 Trial

Inclusion criteria

- Advanced NSCLC; progression after ≥2 cycles of platinumdoublet chemotherapy
- ≥18 years
- ECOG PS 0/1
- Provision of a tumor sample
- PD-L1 expression on ≥1% of tumor cells

Stratification

- ECOG PS: 0 vs 1
- Region: East Asia vs not East Asia
- PD-L1 expression: tumor proportion score ≥50% vs 1-49%

R A Ν D 0 M

Z

Ε

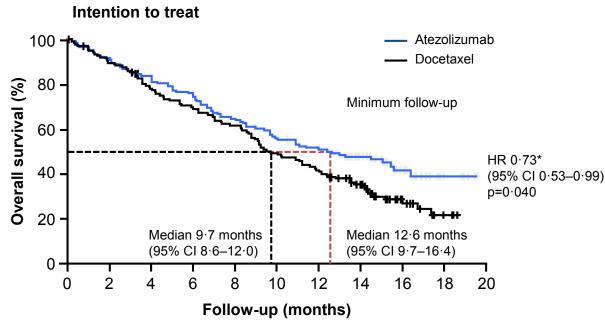
Pembrolizumab monotherapy (2 mg/kg IV every 3 weeks) n = 345

Pembrolizumab monotherapy (10 mg/kg IV every 3 weeks) n = 346

Docetaxel monotherapy (75 mg/m² IV every 3 weeks) n = 343

Treatment for 24 months or until disease progression or discontinuation due to toxicity / other reasons

1:1:1


Primary endpoints	OS, PFS in total population and patients with tumor proportion score ≥50%
Secondary endpoints	Safety, response rate (as per RECIST version 1.1), duration of response

Atezolizumab in NSCLC: Phase 2 Results

- Atezolizumab, an anti-PD-L1 monoclonal antibody, has been evaluated in a randomized Phase 2 study vs. docetaxel in pretreated patients with squamous and nonsquamous NSCLC (POPLAR, NCT01903993; N=287 randomized patients)¹
- Atezolizumab improved
 OS vs docetaxel,
 12.6 vs 9.7 months¹
- With longer follow-up (min 20 months), further separation in survival curves and improvement in OS HR were seen for atezolizumab over docetaxel²

^{1.} Fehrenbacher L et al. Lancet 2016;387:1837-46

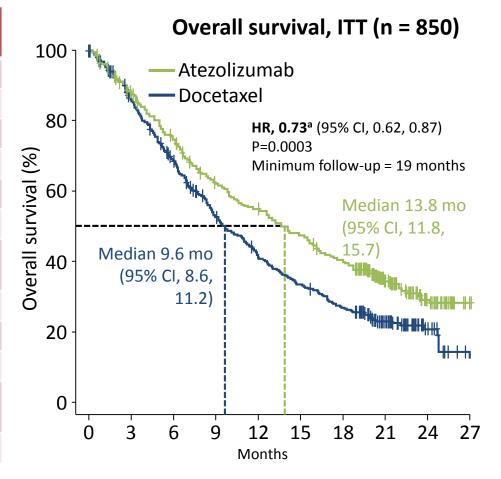
^{2.} Smith DA et al. J Clin Oncol 2016;34(Suppl):9028 ASCO abstract.

Atezolizumab in NSCLC: Phase 2 Results by PD-L1 Expression

• Improved efficacy was observed with increasing PD-L1 expression on tumor-infiltrating immune cells (IC) or tumor cells (TC)

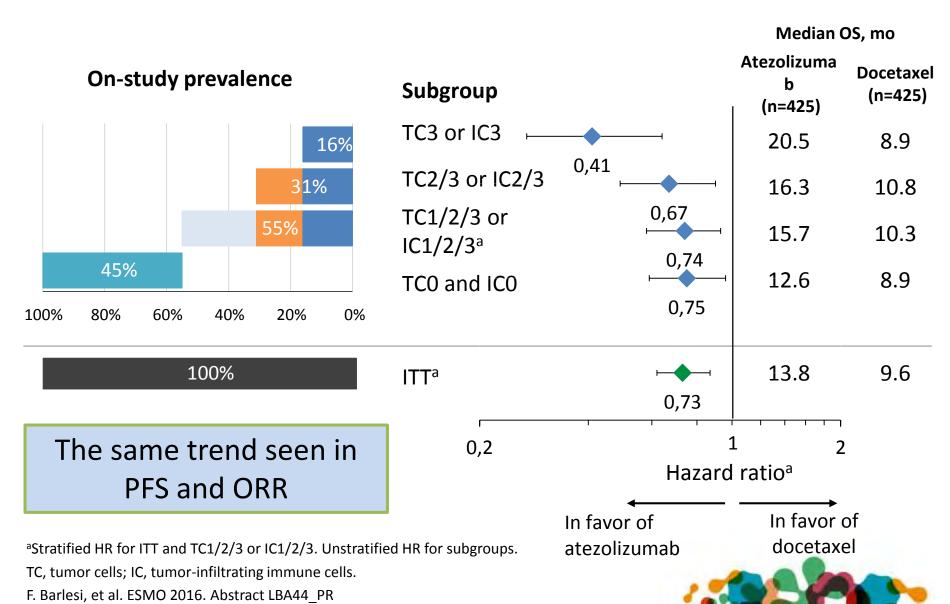
PD-L1 Expression	TC3 or IC3		TC0 and IC0		ITT	
	A (n=24)	D (n=23)	A (n=51)	D (n=41)	A (n=144)	D (n=143)
OS (Primary analysis) ¹						
Median, months	15.5	11.1	9.7	9.7	12.6	9.7
HRª 95% CI	0.4 0.22			04 -1.75		73 -0.99
p value	.0	38	.8	71	.0	40
OS (Updated analysis) ²						
Median, months	NR	11.1	9.7	9.7	12.6	9.7
HRª 95% CI	0.45 0.22-0.95		0.88 0.55-1.42		0.69 0.52-0.92	
p ^b value	.0	33	.6	01	.0	11

^aStratified HR for ITT and unstratified HR for subgroups;; ^bDescriptive only


^{1.} Fehrenbacher L et al. Lancet 2016;387:1837-46

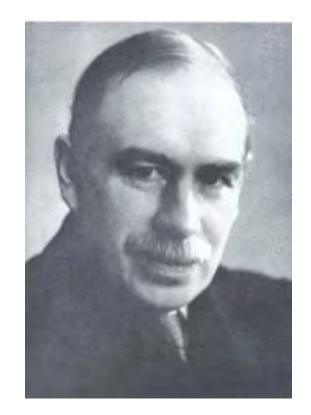
^{2.} Smith DA et al. J Clin Oncol 2016;34(Suppl):9028 ASCO abstract.

OAK, a randomized Phase 3 study comparing atezolizumab with docetaxel in 2L/3L NSCLC


Characteristics	Atezolizumab n = 425	Docetaxel n = 425	
Median age, y	63	64	
≥65 y	45%	49%	
Male	61%	61%	
Nonsquamous	74%	74%	
Squamous	26%	26%	
ECOG PS, 0/1	37%/64%	38%/62%	
No. of prior therapies, 1/2	75%/25%	75%/25%	
History of tobacco use			
Never	20%	17%	
Current/previous	14% / 66%	16% / 67%	
Known EGFR status, %			
Mutant/WT	10% / 75%	10% / 73%	

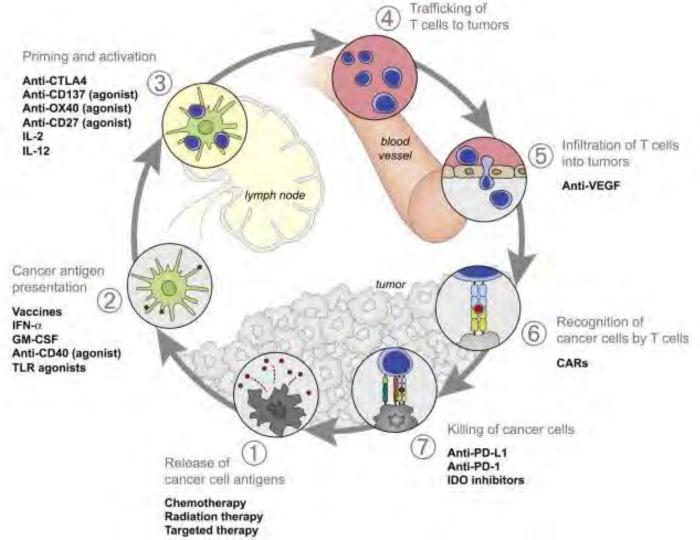
Primary analysis from OAK, a Phase 3 study of atezolizumab vs. docetaxel in 2L/3L NSCLC

Is Immunotherapy the Future of Lung Cancer Treatment?

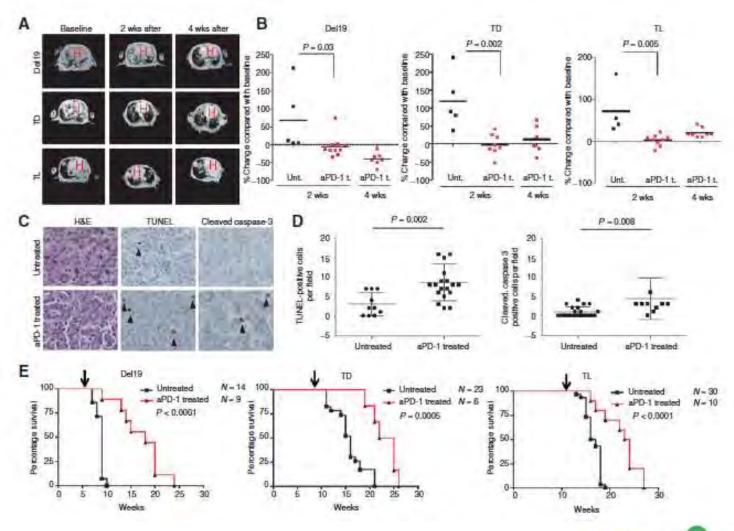

- Answer It's complicated as multiple mechanisms are used to thwart the immune system
- Personalization of therapy will depend on further understanding of what mechanisms are being used by each person's cancer to evade immune surveillance

 Targeting those mechanisms in combination therapies

"The difficulty lies not so much in developing new ideas as in escaping from the old ones".



John Maynard Keynes



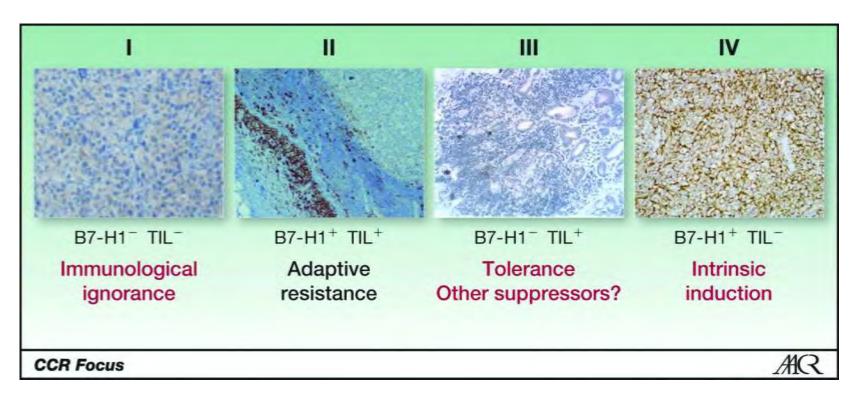
Therapies that Might Affect the Cancer-Immunity Cycle

PD-1 Activation leads to Immune Escape in EGFR-Driven Tumors

Issues with PD-L1 as a Biomarker

- PD-L1 negativity an unreliable biomarker
 - Assays are technically difficult, imperfect; results may differ depending on the antibody/assay (tumor vs immune cells)
 - 5% expression, tumor heterogeneity, and inducible gene = sampling error (false negative)
 - Archived tissue different than recent biopsy
- May be more useful in determining which tumors rather than which patients to treat
- PD-L1 expression may be less relevant for combination therapies
- PD-L1 expression might be constitutive (no immune infiltrate)

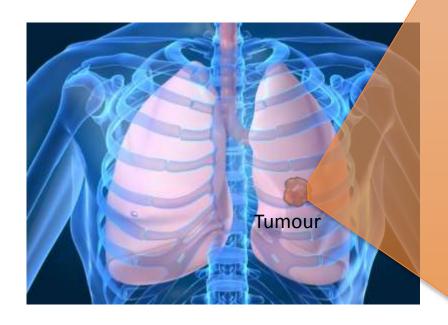
ORR by PD-L1 Expression in Patients with Solid Tumors


Rx Antibody	Testing Method	N	PD-L1 + RR	PD-L1 - RR
Nivolumab ^[1]	Manual staining – 5H1 5% cutoff Tumor staining	49	13/31 42%	0/18 0%
Nivolumab ^[2]	Dako automated 5% cutoff Tumor staining	38	7/17 41%	3/21 14%
MPDL3280A ^[3]	Automated Roche Dx IHC 1% cutoff Tumor immune cell staining	103	13/36 36%	9/67 13%
Ipi/Nivo ^[4]	Dako automated 5% cutoff Tumor staining	56	8/14 57%	17/42 40%

- 1.Topalian SL, et al. N Engl J Med. 2012;366:2443-2454.
- 2. Grosso J, et al. ASCO 2013. Abstract 3016. 3. Herbst RS, et al. ASCO 2013. Abstract 3000. 4. Sznol M, et al. ASCO 2014. LBA9003.

PD-L1 (B7-H1) Expression and Inflammation: Implications for Mechanisms and Therapy

^{*}Implications for combination therapy with other checkpoint inhibitors, chemotherapy, targeted therapy, and vaccines



The Immune Response in Lung Cancer: **Prognostic Implications of Infiltrating Immune Cells**

There is evidence of an immune response in lung cancer:

- Presence of immune cells in the tumour and tumour microenvironment
- Studies have illustrated prognostic value (negative and positive) of different immune cell types

Favourable prognosis1: Overall survival, diseasespecific survival, and disease-free survival

CD3+ Cells

Favourable prognosis²⁻⁴: Disease-specific survival and lower risk of disease recurrence

CD8+ Cells

Favourable prognosis5-8: Overall survival

CD4+ Cells

Favourable prognosis^{6,9}: Overall survival

Macrophages

Favourable prognosis⁷: Overall survival

NK Cells

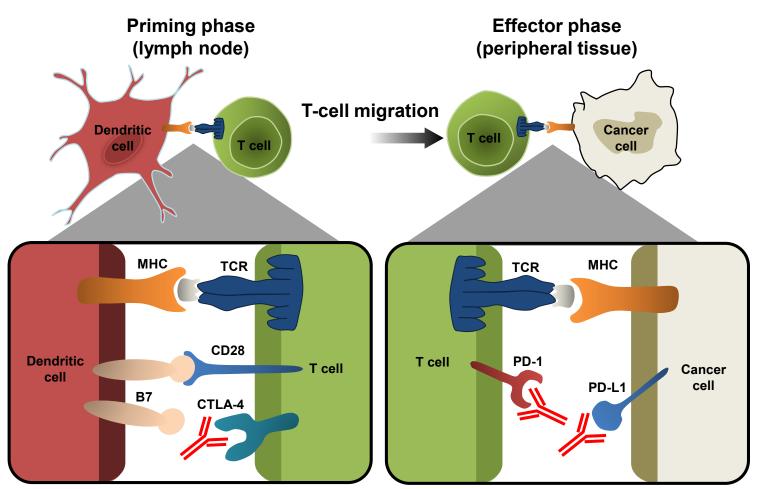
Favourable prognosis¹⁰: Disease-specific survival

NK Cells (immature / impaired)

Unfavourable prognosis¹¹: Disease progression

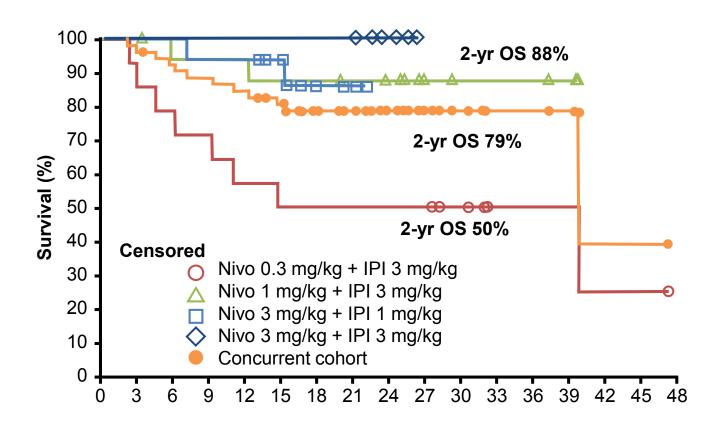
T-regs

Unfavourable prognosis^{12,13}: Overall survival, relapse- and recurrence-free survival


- Dieu-Nosjean MC et al. J Clin Oncol 2008;26:4410-7
- Petersen RP et al. Cancer 2006:107:2866-72
- Al-Shibli K et al. APMIS 2010:118:371-82
- Ruffini E et al. Ann Thorac Surg 2009;87:365-71
- Zhuang X et al. Appl Immunohistochem Mol Morphol 2010;18:24-8
- Hiraoka K et al. Br J Cancer 2006;94:275-80
- Kawai O et al. Cancer 2008:113:1387-95
- McCoy MJ et al. Br J Cancer 2012;107:1107-15
- Wakabayashi O et al. Cancer Sci 2003;94:1003-9
- Al-Shibli K et al. Histopathology 2009;55:301-12

- Jin J et al. PLoS One 2013;8:e61024

CTLA-4 and PD-1/L1 Checkpoint Blockade for Cancer Treatment



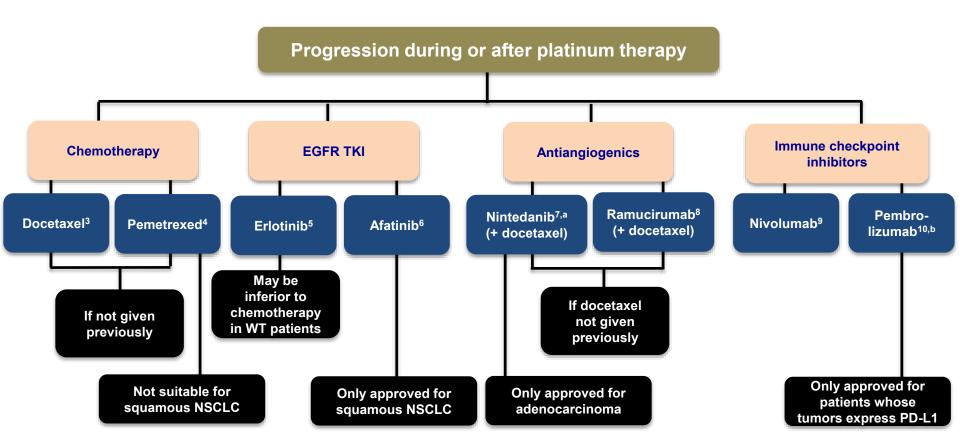
CTLA-4, cytotoxic T-lymphocyte antigen-4; MHC, major histocompatibility complex; PD-1, programmed death-1; TCR, T cell receptor.

Phase I Study of Nivolumab + Ipilimumab in Melanoma: OS for Concurrent Tx

Other Combinations with PD-1 Checkpoint Inhibitors

- Other coinhibitory pathways
 - TIM-3, LAG-3, IDO
- Co- or immunostimulatory pathways
 - OX40, 4-1BB, GITR, IL-2, IFN, IL-21
- Standard of care
 - Chemotherapy, TKI, VEGF inhibitor, XRT
- Cancer vaccines
- Epigenetic therapy

GITR, glucocorticoid-induced TNFR family related gene; IDO, indoleamine,3-dioxygenase; IFN, interferon; IL-2, interleukin-2; IL-21, interleukin-21; LAG-3, lymphocyte activation gene 3; PD-1, programmed death-1; TIM-3, T cell immunoglobulin and mucin protein 3; TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial growth factor.


How to Approach Tumors Without Immune Infiltrates

- Combination immunotherapies
 - 4-1BB, IL-2, OX40, others
- Adoptive Cellular Therapy (ACT)
 - Genetically manipulated cells
 - CAR T cells
 - Professional killers. Don't need to have pre-existing immunity
 - CAR T cells are not HLA restricted
 - Issue is finding antigens expressed only on the tumor

Treatment Options in Second Line: Overview

- ^aApproved in EU only; ^bApproved in US only
- 1. NCCN Clinical Practice Guidelines for Non-Small Cell Lung Cancer, V.4.2016
- 2. Reck M et al. Ann Oncol 2014;25(Suppl 3):27-39

Front-line Immuno-checkpoints in PDL-1 positive NSCLC

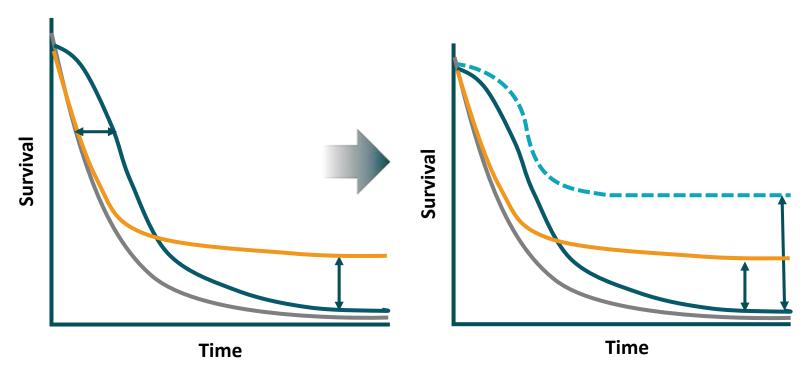
June 2016

Merck's Pembrolizumab Demonstrates Superior Progression-Free and Overall Survival Compared to Chemotherapy as First-Line Treatment in Patients with Advanced Non-Small Cell Lung Cancer

KEYNOTE-024 Studied Patients Whose Tumors Expressed High Levels of PD-L1

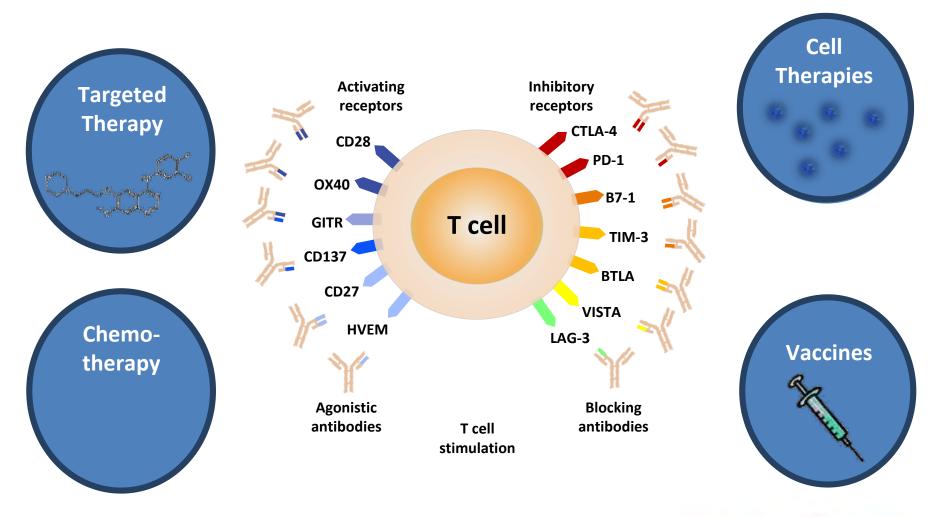
August 2016

Bristol-Myers Squibb Announces Top-Line Results from CheckMate -026, a Phase 3 Study of Opdivo (nivolumab) in Treatment-Naïve Patients with Advanced Non-Small Cell Lung Cancer

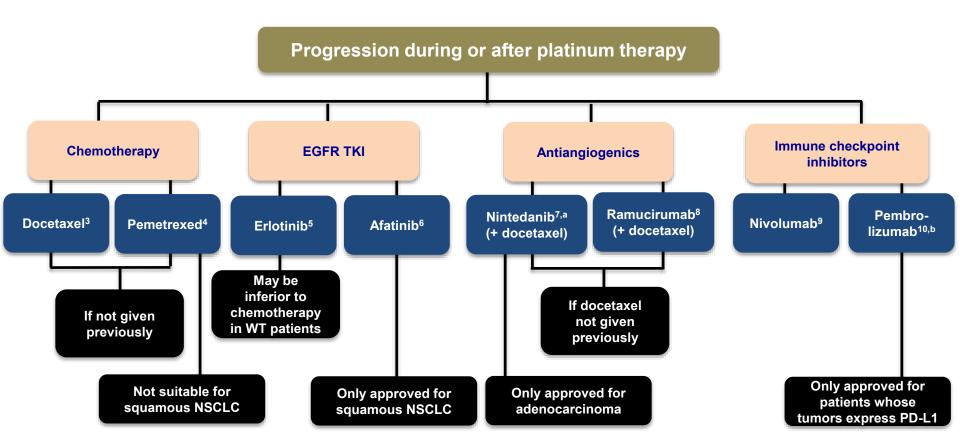

Opdivo did not meet trial primary endpoint of progression-free survival in patients expressing PD-L1 = 5%

Where we are now

Where we want to be

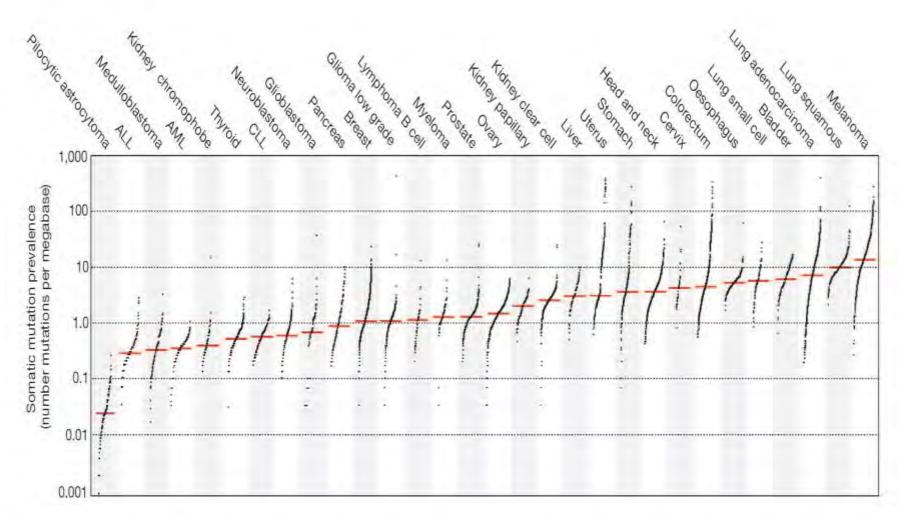


- Control
- Targeted therapies
- Immune checkpoint blockade
- -- Combinations/sequencing/biomarker selection



T-Cell Immune Checkpoints as Targets for Immunotherapy

Treatment Options in Second Line: Overview



- ^aApproved in EU only; ^bApproved in US only
- 1. NCCN Clinical Practice Guidelines for Non-Small Cell Lung Cancer, V.4.2016
- 2. Reck M et al. Ann Oncol 2014;25(Suppl 3):27-39

Cancer is a genetic disease: Mutational burden across cancers

